From Wikipedia, the free encyclopedia
Jump to: navigation, search
Available structures
PDB Ortholog search: PDBe RCSB
Aliases SOST, CDD, SOST1, VBCH, DAND6, sclerostin
External IDs OMIM: 605740 MGI: 1921749 HomoloGene: 11542 GeneCards: SOST
Species Human Mouse
RefSeq (mRNA)



RefSeq (protein)



Location (UCSC) Chr 17: 43.75 – 43.76 Mb Chr 11: 101.96 – 101.97 Mb
PubMed search [1] [2]
View/Edit Human View/Edit Mouse
Symbol Sclerostin
Pfam PF05463
InterPro IPR008835

Sclerostin is a protein that in humans is encoded by the SOST gene.[3][4]

Sclerostin is a secreted glycoprotein with a C-terminal cysteine knot-like (CTCK) domain and sequence similarity to the DAN (differential screening-selected gene aberrative in neuroblastoma) family of bone morphogenetic protein (BMP) antagonists. Sclerostin is produced by the osteocyte and has anti-anabolic effects on bone formation.[5]


The sclerostin protein, with a length of 213 residues, has a dssp secondary structure that is 28% beta sheet (6 strands; 32 residues).[6]


Sclerostin, the product of the SOST gene, located on chromosome 17q12–q21 in humans,[7] was originally believed to be a non-classical bone morphogenetic protein (BMP) antagonist.[8] More recently sclerostin has been identified as binding to LRP5/6 receptors and inhibiting the Wnt signaling pathway.[9][10] The inhibition of the Wnt pathway leads to decreased bone formation.[9] Although the underlying mechanisms are unclear, it is believed that the antagonism of BMP-induced bone formation by sclerostin is mediated by Wnt signaling, but not BMP signaling pathways.[11][12] Sclerostin is expressed in osteocytes and some chondrocytes and it inhibits bone formation by osteoblasts.[13][14][15]

Sclerostin production by osteocytes is inhibited by parathyroid hormone,[15][16] mechanical loading[17] and cytokines including prostaglandin E2,[18] oncostatin M, cardiotrophin-1 and leukemia inhibitory factor.[19] Sclerostin production is increased by calcitonin.[20] Thus, osteoblast activity is self regulated by a negative feedback system.[21]

Clinical significance[edit]

Mutations in the gene that encodes the sclerostin protein are associated with disorders associated with high bone mass, sclerosteosis and van Buchem disease.[7] Sclerosteosis is an autosomal recessive disorder characterized by bone overgrowth. It was first described in 1958[22][23] but given the current name in 1967.[24] Excessive bone formation is most prominent in the skull, mandible and tubular bones.[22] It can cause facial distortion and syndactyly.[22] Increased intracranial pressure can cause sudden death in patients.[22] It is a rare disorder that is most prominent in the Afrikaner population in South Africa (40 patients), but there have also been cases of American and Brazilian families.[22]

van Buchem disease is also an autosomal recessive skeletal disease characterized by bone overgrowth.[24] It was first described in 1955 as "hyperostosis corticalis generalisata familiaris", but was given the current name in 1968.[24][25] Excessive bone formation is most prominent in the skull, mandible, clavicle, ribs and diaphyses of long bones and bone formation occurs throughout life.[24] It is a very rare condition with about 30 known cases in 2002.[24] In 1967 van Buchem characterized the disease in 15 patients of Dutch origin.[24] Patients with sclerosteosis are distinguished from those with van Buchem disease because they are often taller and have hand malformations.[22]

An antibody for sclerostin is being developed because of the protein’s specificity to bone.[13] Its use has increased bone growth in preclinical trials in osteoporotic rats and monkeys.[26][27] In a Phase I study, a single dose of anti-sclerostin antibody from Amgen (Romosozumab) increased bone density in the hip and spine in healthy men and postmenopausal women and the drug was well tolerated.[28] In a Phase II trial, one year of the antibody treatment in osteoporotic women increased bone density more than bisphosphonate and teriparatide treatment; it had mild injection side effects.[14][29] A Phase II trial of a monoclonal human antibody to sclerostin from Eli Lilly had positive effects on post-menopausal women. Monthly treatments of the antibody for one year increased the bone mineral density of the spine and hip by 18 percent and 6 percent, respectively, compared to the placebo group.[30] In a Phase III trial, one year of Romosozumab treatment in post-menopausal women reduced the risk of vertebral fractures compared to the placebo group. It also increased the bone mineral density in the lumbar spine (13.3% versus 0.0%), femoral neck (5.2% versus -0.7%) and total hip (6.8% versus 0.0%) compared to the placebo group. Adverse events were balanced between the groups.[31]

The Amgen drug is expected to be on the market in 2017 and is predicted to be the gold standard in osteoporosis treatment by 2021.[32] In addition, OsteoGeneX is developing small molecule inhibitors of sclerostin.[33]


  1. ^ "Human PubMed Reference:". 
  2. ^ "Mouse PubMed Reference:". 
  3. ^ Brunkow ME, Gardner JC, Van Ness J, Paeper BW, Kovacevich BR, Proll S, Skonier JE, Zhao L, Sabo PJ, Fu Y, Alisch RS, Gillett L, Colbert T, Tacconi P, Galas D, Hamersma H, Beighton P, Mulligan J (Mar 2001). "Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein". American Journal of Human Genetics. 68 (3): 577–89. PMC 1274471Freely accessible. PMID 11179006. doi:10.1086/318811. 
  4. ^ Balemans W, Ebeling M, Patel N, Van Hul E, Olson P, Dioszegi M, Lacza C, Wuyts W, Van Den Ende J, Willems P, Paes-Alves AF, Hill S, Bueno M, Ramos FJ, Tacconi P, Dikkers FG, Stratakis C, Lindpaintner K, Vickery B, Foernzler D, Van Hul W (Mar 2001). "Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST)". Human Molecular Genetics. 10 (5): 537–43. PMID 11181578. doi:10.1093/hmg/10.5.537. 
  5. ^ "Entrez Gene: SOST sclerosteosis". 
  6. ^ Weidauer SE, Schmieder P, Beerbaum M, Schmitz W, Oschkinat H, Mueller TD (Feb 2009). "NMR structure of the Wnt modulator protein Sclerostin". Biochem Biophys Res Commun. 380 (1): 160–5. PMID 19166819. doi:10.1016/j.bbrc.2009.01.062. 
  7. ^ a b Van Bezooijen, R. L.; Papapoulos, S. E.; Hamdy, N. A.; Ten Dijke, P.; Löwik, C. W. (2005). "Control of bone formation by osteocytes? Lessons from the rare skeletal disorders sclerosteosis and van Buchem disease". BoneKEy-Osteovision. 2 (12): 33–38. doi:10.1138/20050189. 
  8. ^ Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE, Shpektor D, Jonas M, Kovacevich BR, Staehling-Hampton K, Appleby M, Brunkow ME, Latham JA (Dec 2003). "Osteocyte control of bone formation via sclerostin, a novel BMP antagonist". The EMBO Journal. 22 (23): 6267–76. PMC 291840Freely accessible. PMID 14633986. doi:10.1093/emboj/cdg599. 
  9. ^ a b Li X, Zhang Y, Kang H, Liu W, Liu P, Zhang J, Harris SE, Wu D (May 2005). "Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling". The Journal of Biological Chemistry. 280 (20): 19883–7. PMID 15778503. doi:10.1074/jbc.M413274200. 
  10. ^ Ellies DL, Viviano B, McCarthy J, Rey JP, Itasaki N, Saunders S, Krumlauf R (Nov 2006). "Bone density ligand, Sclerostin, directly interacts with LRP5 but not LRP5G171V to modulate Wnt activity". Journal of Bone and Mineral Research. 21 (11): 1738–49. PMID 17002572. doi:10.1359/jbmr.060810. 
  11. ^ van Bezooijen RL, Svensson JP, Eefting D, Visser A, van der Horst G, Karperien M, Quax PH, Vrieling H, Papapoulos SE, ten Dijke P, Löwik CW (Jan 2007). "Wnt but not BMP signaling is involved in the inhibitory action of sclerostin on BMP-stimulated bone formation". Journal of Bone and Mineral Research. 22 (1): 19–28. PMID 17032150. doi:10.1359/jbmr.061002. 
  12. ^ Krause C, Korchynskyi O, de Rooij K, Weidauer SE, de Gorter DJ, van Bezooijen RL, Hatsell S, Economides AN, Mueller TD, Löwik CW, ten Dijke P (Dec 2010). "Distinct modes of inhibition by sclerostin on bone morphogenetic protein and Wnt signaling pathways". The Journal of Biological Chemistry. 285 (53): 41614–26. PMC 3009889Freely accessible. PMID 20952383. doi:10.1074/jbc.M110.153890. 
  13. ^ a b Bonewald LF (Feb 2011). "The amazing osteocyte". Journal of Bone and Mineral Research. 26 (2): 229–38. PMC 3179345Freely accessible. PMID 21254230. doi:10.1002/jbmr.320. 
  14. ^ a b Burgers TA, Williams BO (Jun 2013). "Regulation of Wnt/β-catenin signaling within and from osteocytes". Bone. 54 (2): 244–9. PMC 3652284Freely accessible. PMID 23470835. doi:10.1016/j.bone.2013.02.022. 
  15. ^ a b Bellido T, Saini V, Pajevic PD (Jun 2013). "Effects of PTH on osteocyte function". Bone. 54 (2): 250–7. PMC 3552098Freely accessible. PMID 23017659. doi:10.1016/j.bone.2012.09.016. 
  16. ^ Bellido T, Ali AA, Gubrij I, Plotkin LI, Fu Q, O'Brien CA, Manolagas SC, Jilka RL (Nov 2005). "Chronic elevation of parathyroid hormone in mice reduces expression of sclerostin by osteocytes: a novel mechanism for hormonal control of osteoblastogenesis". Endocrinology. 146 (11): 4577–83. PMID 16081646. doi:10.1210/en.2005-0239. 
  17. ^ Robling AG, Niziolek PJ, Baldridge LA, Condon KW, Allen MR, Alam I, Mantila SM, Gluhak-Heinrich J, Bellido TM, Harris SE, Turner CH (Feb 2008). "Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin". The Journal of Biological Chemistry. 283 (9): 5866–75. PMID 18089564. doi:10.1074/jbc.M705092200. 
  18. ^ Genetos DC, Yellowley CE, Loots GG (March 2011). "Prostaglandin E2 signals through PTGER2 to regulate sclerostin expression". PLOS ONE. 6 (3): e17772. PMC 3059227Freely accessible. PMID 21436889. doi:10.1371/journal.pone.0017772. 
  19. ^ Walker EC, McGregor NE, Poulton IJ, Solano M, Pompolo S, Fernandes TJ, Constable MJ, Nicholson GC, Zhang JG, Nicola NA, Gillespie MT, Martin TJ, Sims NA (Feb 2010). "Oncostatin M promotes bone formation independently of resorption when signaling through leukemia inhibitory factor receptor in mice". The Journal of Clinical Investigation. 120 (2): 582–92. PMC 2810087Freely accessible. PMID 20051625. doi:10.1172/JCI40568. 
  20. ^ Gooi JH, Pompolo S, Karsdal MA, Kulkarni NH, Kalajzic I, McAhren SH, Han B, Onyia JE, Ho PW, Gillespie MT, Walsh NC, Chia LY, Quinn JM, Martin TJ, Sims NA (Jun 2010). "Calcitonin impairs the anabolic effect of PTH in young rats and stimulates expression of sclerostin by osteocytes". Bone. 46 (6): 1486–97. PMID 20188226. doi:10.1016/j.bone.2010.02.018. 
  21. ^
  22. ^ a b c d e f Balemans W, Ebeling M, Patel N, Van Hul E, Olson P, Dioszegi M, Lacza C, Wuyts W, Van Den Ende J, Willems P, Paes-Alves AF, Hill S, Bueno M, Ramos FJ, Tacconi P, Dikkers FG, Stratakis C, Lindpaintner K, Vickery B, Foernzler D, Van Hul W (Mar 2001). "Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST)". Human Molecular Genetics. 10 (5): 537–43. PMID 11181578. doi:10.1093/hmg/10.5.537. 
  23. ^ Truswell AS (May 1958). "Osteopetrosis with syndactyly; a morphological variant of Albers-Schönberg's disease". The Journal of Bone and Joint Surgery. British Volume. 40–B (2): 209–18. PMID 13539104. 
  24. ^ a b c d e f Balemans W, Patel N, Ebeling M, Van Hul E, Wuyts W, Lacza C, Dioszegi M, Dikkers FG, Hildering P, Willems PJ, Verheij JB, Lindpaintner K, Vickery B, Foernzler D, Van Hul W (Feb 2002). "Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease". Journal of Medical Genetics. 39 (2): 91–7. PMC 1735035Freely accessible. PMID 11836356. doi:10.1136/jmg.39.2.91. 
  25. ^ Fosmoe RJ, Holm RS, Hildreth RC (Apr 1968). "Van Buchem's disease (hyperostosis corticalis generalisata familiaris). A case report". Radiology. 90 (4): 771–4. PMID 4867898. doi:10.1148/90.4.771. 
  26. ^ Li X, Ominsky MS, Warmington KS, Morony S, Gong J, Cao J, Gao Y, Shalhoub V, Tipton B, Haldankar R, Chen Q, Winters A, Boone T, Geng Z, Niu QT, Ke HZ, Kostenuik PJ, Simonet WS, Lacey DL, Paszty C (Apr 2009). "Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis". Journal of Bone and Mineral Research. 24 (4): 578–88. PMID 19049336. doi:10.1359/jbmr.081206. 
  27. ^ Ominsky MS, Vlasseros F, Jolette J, Smith SY, Stouch B, Doellgast G, Gong J, Gao Y, Cao J, Graham K, Tipton B, Cai J, Deshpande R, Zhou L, Hale MD, Lightwood DJ, Henry AJ, Popplewell AG, Moore AR, Robinson MK, Lacey DL, Simonet WS, Paszty C (May 2010). "Two doses of sclerostin antibody in cynomolgus monkeys increases bone formation, bone mineral density, and bone strength". Journal of Bone and Mineral Research. 25 (5): 948–59. PMID 20200929. doi:10.1002/jbmr.14. 
  28. ^ Padhi D, Jang G, Stouch B, Fang L, Posvar E (Jan 2011). "Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody". Journal of Bone and Mineral Research. 26 (1): 19–26. PMID 20593411. doi:10.1002/jbmr.173. 
  29. ^ Reid, I. R. (2012). "Osteoporosis treatment at ASBMR 2012". IBMS BoneKEy. 9. doi:10.1038/bonekey.2012.245. 
  30. ^ Recker RR, Benson CT, Matsumoto T, Bolognese MA, Robins DA, Alam J, Chiang AY, Hu L, Krege JH, Sowa H, Mitlak BH, Myers SL (Feb 2015). "A randomized, double-blind phase 2 clinical trial of blosozumab, a sclerostin antibody, in postmenopausal women with low bone mineral density". Journal of Bone and Mineral Research. 30 (2): 216–24. PMID 25196993. doi:10.1002/jbmr.2351. 
  31. ^ Cosman, et al. (2016). "Romosozumab Treatment in Postmenopausal Women with Osteoporosis". The New England journal of medicine. 375: 1532–1543. PMID 27641143. doi:10.1056/NEJMoa1607948. 
  32. ^ "For Osteoporosis and Osteopenia, Clinical Data and Thought Leaders' Opinions Indicate that AMG-785/CDP-7851 and Odanacatib Have Advantages Over Alendronate". PR Newswire. 2013-04-04. Retrieved 2013-04-20. 
  33. ^ Rey JP, Ellies DL (Jan 2010). "Wnt modulators in the biotech pipeline". Developmental Dynamics. 239 (1): 102–14. PMC 3111251Freely accessible. PMID 20014100. doi:10.1002/dvdy.22181. 

Further reading[edit]

External links[edit]