Seiffert's spiral

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

Seiffert's spherical spiral is a curve on a sphere made by moving on the sphere with constant speed and angular velocity with respect to a fixed diameter. If the selected diameter is the line from the north pole to the south pole, then the requirement of constant angular velocity means that the longitude of the moving point changes at a constant rate.[1] The cylindrical coordinates of the varying point on this curve are given by the Jacobian elliptic functions.

See also[edit]


  • Seiffert, A. (1896), Ueber eine neue geometrische Einführung in die Theorie der elliptischen Functionen, 127, Wissensch. Beiträge Jahresber. Städtischen Realschule zu Charlottenburg, Ostern, JFM 27.0337.02
  • Erdös, Paul (2000), "Spiraling the Earth with C. G. J. Jacobi", American Journal of Physics, 88 (10): 888–895, doi:10.1119/1.1285882

External links[edit]

  1. ^ Bowman, F (1961). Introduction to Elliptic Functions with Applications. New York: Dover.