# Selberg sieve

Atle Selberg

In mathematics, in the field of number theory, the Selberg sieve is a technique for estimating the size of "sifted sets" of positive integers which satisfy a set of conditions which are expressed by congruences. It was developed by Atle Selberg in the 1940s.

## Description

In terms of sieve theory the Selberg sieve is of combinatorial type: that is, derives from a careful use of the inclusion–exclusion principle. Selberg replaced the values of the Möbius function which arise in this by a system of weights which are then optimised to fit the given problem. The result gives an upper bound for the size of the sifted set.

Let A be a set of positive integers ≤ x and let P be a set of primes. Let Ad denote the set of elements of A divisible by d when d is a product of distinct primes from P. Further let A1 denote A itself. Let z be a positive real number and P(z) denote the product of the primes in P which are ≤ z. The object of the sieve is to estimate

${\displaystyle S(A,P,z)=\left\vert A\setminus \bigcup _{p\mid P(z)}A_{p}\right\vert .}$

We assume that |Ad| may be estimated by

${\displaystyle \left\vert A_{d}\right\vert ={\frac {1}{f(d)}}X+R_{d}.}$

where f is a multiplicative function and X   =   |A|. Let the function g be obtained from f by Möbius inversion, that is

${\displaystyle g(n)=\sum _{d\mid n}\mu (d)f(n/d)}$
${\displaystyle f(n)=\sum _{d\mid n}g(d)}$

where μ is the Möbius function. Put

${\displaystyle V(z)=\sum _{\begin{smallmatrix}d

Then

${\displaystyle S(A,P,z)\leq {\frac {X}{V(z)}}+O\left({\sum _{\begin{smallmatrix}d_{1},d_{2}

where [d1,d2] denotes the least common multiple of d1 and d2. It is often useful to estimate V(z) by the bound

${\displaystyle V(z)\geq \sum _{d\leq z}{\frac {1}{f(d)}}.\,}$

## References

• Cojocaru, Alina Carmen; Murty, M. Ram (2005). An introduction to sieve methods and their applications. London Mathematical Society Student Texts. 66. Cambridge University Press. pp. 113–134. ISBN 0-521-61275-6. Zbl 1121.11063.
• Diamond, Harold G.; Halberstam, Heini (2008). A Higher-Dimensional Sieve Method: with Procedures for Computing Sieve Functions. Cambridge Tracts in Mathematics. 177. With William F. Galway. Cambridge: Cambridge University Press. ISBN 978-0-521-89487-6. Zbl 1207.11099. CS1 maint: discouraged parameter (link)
• Greaves, George (2001). Sieves in number theory. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. 43. Berlin: Springer-Verlag. ISBN 3-540-41647-1. Zbl 1003.11044.
• Halberstam, Heini; Richert, H.E. (1974). Sieve Methods. London Mathematical Society Monographs. 4. Academic Press. ISBN 0-12-318250-6. Zbl 0298.10026. CS1 maint: discouraged parameter (link)
• Hooley, Christopher (1976). Applications of sieve methods to the theory of numbers. Cambridge Tracts in Mathematics. 70. Cambridge University Press. pp. 7–12. ISBN 0-521-20915-3. Zbl 0327.10044. CS1 maint: discouraged parameter (link)
• Selberg, Atle (1947). "On an elementary method in the theory of primes". Norske Vid. Selsk. Forh. Trondheim. 19: 64–67. ISSN 0368-6302. Zbl 0041.01903. CS1 maint: discouraged parameter (link)