Zero sharp

From Wikipedia, the free encyclopedia
(Redirected from Sharp (set theory))

In the mathematical discipline of set theory, 0# (zero sharp, also 0#) is the set of true formulae about indiscernibles and order-indiscernibles in the Gödel constructible universe. It is often encoded as a subset of the natural numbers (using Gödel numbering), or as a subset of the hereditarily finite sets, or as a real number. Its existence is unprovable in ZFC, the standard form of axiomatic set theory, but follows from a suitable large cardinal axiom. It was first introduced as a set of formulae in Silver's 1966 thesis, later published as Silver (1971), where it was denoted by Σ, and rediscovered by Solovay (1967, p.52), who considered it as a subset of the natural numbers and introduced the notation O# (with a capital letter O; this later changed to the numeral '0').

Roughly speaking, if 0# exists then the universe V of sets is much larger than the universe L of constructible sets, while if it does not exist then the universe of all sets is closely approximated by the constructible sets.

Definition[edit]

Zero sharp was defined by Silver and Solovay as follows. Consider the language of set theory with extra constant symbols c1, c2, ... for each nonzero natural number. Then 0# is defined to be the set of Gödel numbers of the true sentences about the constructible universe, with ci interpreted as the uncountable cardinal . (Here means in the full universe, not the constructible universe.)

There is a subtlety about this definition: by Tarski's undefinability theorem it is not, in general, possible to define the truth of a formula of set theory in the language of set theory. To solve this, Silver and Solovay assumed the existence of a suitable large cardinal, such as a Ramsey cardinal, and showed that with this extra assumption it is possible to define the truth of statements about the constructible universe. More generally, the definition of 0# works provided that there is an uncountable set of indiscernibles for some Lα, and the phrase "0# exists" is used as a shorthand way of saying this.

A closed set of order-indiscernibles for (where is a limit ordinal) is a set of Silver indiscernibles if:

  • is unbounded in , and
  • if is unbounded in an ordinal , then the Skolem hull of in is . In other words, every is definable in from parameters in .

If there is a set of Silver indiscernibles for , then it is unique. Additionally, for any uncountable cardinal there will be a unique set of Silver indiscernibles for . The union of all these sets will be a proper class of Silver indiscernibles for the structure itself. Then, 0# is defined as the set of all Gödel numbers of formulae such that

where is any strictly increasing sequence of members of . Because they are indiscernibles, the definition does not depend on the choice of sequence.

Any has the property that . This allows for a definition of truth for the constructible universe:

only if for some .

There are several minor variations of the definition of 0#, which make no significant difference to its properties. There are many different choices of Gödel numbering, and 0# depends on this choice. Instead of being considered as a subset of the natural numbers, it is also possible to encode 0# as a subset of formulae of a language, or as a subset of the hereditarily finite sets, or as a real number.

Statements implying existence[edit]

The condition about the existence of a Ramsey cardinal implying that 0# exists can be weakened. The existence of ω1-Erdős cardinals implies the existence of 0#. This is close to being best possible, because the existence of 0# implies that in the constructible universe there is an α-Erdős cardinal for all countable α, so such cardinals cannot be used to prove the existence of 0#.

Chang's conjecture implies the existence of 0#.

Statements equivalent to existence[edit]

Kunen showed that 0# exists if and only if there exists a non-trivial elementary embedding for the Gödel constructible universe L into itself.

Donald A. Martin and Leo Harrington have shown that the existence of 0# is equivalent to the determinacy of lightface analytic games. In fact, the strategy for a universal lightface analytic game has the same Turing degree as 0#.

It follows from Jensen's covering theorem that the existence of 0# is equivalent to ωω being a regular cardinal in the constructible universe L.

Silver showed that the existence of an uncountable set of indiscernibles in the constructible universe is equivalent to the existence of 0#.

Consequences of existence and non-existence[edit]

The existence of 0# implies that every uncountable cardinal in the set-theoretic universe V is an indiscernible in L and satisfies all large cardinal axioms that are realized in L (such as being totally ineffable). It follows that the existence of 0# contradicts the axiom of constructibility: V = L.

If 0# exists, then it is an example of a non-constructible Δ1
3
set of natural numbers. This is in some sense the simplest possibility for a non-constructible set, since all Σ1
2
and Π1
2
sets of natural numbers are constructible.

On the other hand, if 0# does not exist, then the constructible universe L is the core model—that is, the canonical inner model that approximates the large cardinal structure of the universe considered. In that case, Jensen's covering lemma holds:

For every uncountable set x of ordinals there is a constructible y such that xy and y has the same cardinality as x.

This deep result is due to Ronald Jensen. Using forcing it is easy to see that the condition that x is uncountable cannot be removed. For example, consider Namba forcing, that preserves and collapses to an ordinal of cofinality . Let be an -sequence cofinal on and generic over L. Then no set in L of L-size smaller than (which is uncountable in V, since is preserved) can cover , since is a regular cardinal.

Other sharps[edit]

If x is any set, then x# is defined analogously to 0# except that one uses L[x] instead of L. See the section on relative constructibility in constructible universe.

See also[edit]

  • 0, a set similar to 0# where the constructible universe is replaced by a larger inner model with a measurable cardinal.

References[edit]

  • Drake, F. R. (1974). Set Theory: An Introduction to Large Cardinals (Studies in Logic and the Foundations of Mathematics; V. 76). Elsevier Science Ltd. ISBN 0-444-10535-2.
  • Harrington, Leo (1978). "Analytic determinacy and 0 #". Journal of Symbolic Logic. 43 (4): 685–693. doi:10.2307/2273508. ISSN 0022-4812. MR 0518675.
  • Jech, Thomas (2003). Set Theory. Springer Monographs in Mathematics (Third Millennium ed.). Berlin, New York: Springer-Verlag. ISBN 978-3-540-44085-7. Zbl 1007.03002.
  • Kanamori, Akihiro (2003). The Higher Infinite : Large Cardinals in Set Theory from Their Beginnings (2nd ed.). Springer. ISBN 3-540-00384-3.
  • Martin, Donald A. (1970). "Measurable cardinals and analytic games". Fundamenta Mathematicae. 66 (3): 287–291. doi:10.4064/fm-66-3-287-291. ISSN 0016-2736. MR 0258637.
  • Silver, Jack H. (1971). "Some applications of model theory in set theory". Annals of Mathematical Logic. 3 (1): 45–110. doi:10.1016/0003-4843(71)90010-6. MR 0409188.