Siegel identity

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

In mathematics, Siegel's identity refers to one of two formulae that are used in the resolution of Diophantine equations.

Statement[edit]

The first formula is

The second is

Application[edit]

The identities are used in translating Diophantine problems connected with integral points on hyperelliptic curves into S-unit equations.

See also[edit]

References[edit]

  • Baker, Alan (1975). Transcendental Number Theory. Cambridge University Press. p. 40. ISBN 0-521-20461-5. Zbl 0297.10013.
  • Baker, Alan; Wüstholz, Gisbert (2007). Logarithmic Forms and Diophantine Geometry. New Mathematical Monographs. 9. Cambridge University Press. p. 53. ISBN 978-0-521-88268-2. Zbl 1145.11004.
  • Kubert, Daniel S.; Lang, Serge (1981). Modular Units. Grundlehren der Mathematischen Wissenschaften. 244. ISBN 0-387-90517-0.
  • Lang, Serge (1978). Elliptic Curves: Diophantine Analysis. Grundlehren der mathematischen Wissenschaften. 231. Springer-Verlag. ISBN 0-387-08489-4.
  • Smart, N. P. (1998). The Algorithmic Resolution of Diophantine Equations. London Mathematical Society Student Texts. 41. Cambridge University Press. pp. 36–37. ISBN 0-521-64633-2.