Small triambic icosahedron

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Small triambic icosahedron
DU30 small triambic icosahedron.png
Type Dual uniform polyhedron
Index DU30, 2/59, W26
(As a star polyhedron)
F = 20, E = 60
V = 32 (χ = −8)
Symmetry group icosahedral (Ih)
Dual polyhedron small ditrigonal icosidodecahedron
Stellation diagram Stellation core Convex hull
Small triambic icosahedron stellation facets.svg Icosahedron.png
Pentakis dodecahedron.png
Pentakis dodecahedron
3D model of a small triambic icosahedron

In geometry, the small triambic icosahedron is a star polyhedron composed of 20 intersecting non-regular hexagon faces. It has 60 edges and 32 vertices, and Euler characteristic of −8. It is an isohedron, meaning that all of its faces are symmetric to each other, and Branko Grünbaum has conjectured that it is the only Euclidean isohedron with faces of six or more sides.[1]

Related shapes[edit]

The external surface of the small triambic icosahedron (removing the parts of each hexagonal face that are surrounded by other faces, but interpreting the resulting disconnected plane figures as still being faces) coincides with one of the stellations of the icosahedron.[2] If instead, after removing the surrounded parts of each face, each resulting triple of coplanar triangles is considered to be three separate faces, then the result is one form of the triakis icosahedron, formed by adding a triangular pyramid to each face of an icosahedron.

The dual polyhedron of the small triambic icosahedron is the small ditrigonal icosidodecahedron. As this is a uniform polyhedron, the small triambic icosahedron is a uniform dual. Other uniform duals whose exterior surfaces are stellations of the icosahedron are the medial triambic icosahedron and the great triambic icosahedron.


  1. ^ Grünbaum, Branko (2008). "Can every face of a polyhedron have many sides?". Geometry, games, graphs and education: the Joe Malkevitch Festschrift. Bedford, Massachusetts: Comap, Inc. pp. 9–26. hdl:1773/4593. MR 2512345.
  2. ^ Coxeter, Harold Scott MacDonald; Du Val, P.; Flather, H. T.; Petrie, J. F. (1999). The fifty-nine icosahedra (3rd ed.). Tarquin. ISBN 978-1-899618-32-3. MR 0676126. (1st Edn University of Toronto (1938))

Further reading[edit]

External links[edit]