Solar eclipse of February 17, 2064

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Solar eclipse of February 17, 2064
SE2064Feb17A.png
Map
Type of eclipse
NatureAnnular
Gamma0.3597
Magnitude0.9262
Maximum eclipse
Duration536 sec (8 m 56 s)
Coordinates7°00′N 69°42′E / 7°N 69.7°E / 7; 69.7
Max. width of band295 km (183 mi)
Times (UTC)
Greatest eclipse7:00:23
References
Saros141 (26 of 70)
Catalog # (SE5000)9650

An annular solar eclipse will occur on February 17, 2064. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

Related eclipses[edit]

Solar eclipses 2062–2065[edit]

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]

121 March 11, 2062
SE2062Mar11P.png
Partial
126 September 3, 2062
SE2062Sep03P.png
Partial
131 February 28, 2063
SE2063Feb28A.png
Annular
136 August 24, 2063
SE2063Aug24T.png
Total
141 February 17, 2064
SE2064Feb17A.png
Annular
146 August 12, 2064
SE2064Aug12T.png
Total
151 February 5, 2065
SE2065Feb05P.png
Partial
156 August 2, 2065
SE2065Aug02P.png
Partial

Saros 141[edit]

Solar saros 141, repeating every about 18 years, 11 days, and 8 hours, contains 70 events. The series started with partial solar eclipse on May 19, 1613. It contains 41 annular eclipses from August 4, 1739, to October 14, 2460. There are no total eclipses in this series. The series ends at member 70 as a partial eclipse on June 13, 2857. The longest annular eclipse occurred on December 14, 1955, with maximum duration of annularity at 12 minutes and 9 seconds. All eclipses in this series occur at the Moon’s ascending node.[2]

Inex series[edit]

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Metonic series[edit]

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

References[edit]

  1. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  2. ^ Saros Series Catalog of Solar Eclipses NASA Eclipse Web Site.

External links[edit]