Solar eclipse of March 9, 2035

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Solar eclipse of March 9, 2035
SE2035Mar09A.png
Map
Type of eclipse
NatureAnnular
Gamma-0.4368
Magnitude0.9919
Maximum eclipse
Duration48 sec (0 m 48 s)
Coordinates29°00′S 154°54′W / 29°S 154.9°W / -29; -154.9
Max. width of band31 km (19 mi)
Times (UTC)
Greatest eclipse23:05:54
References
Saros140 (30 of 71)
Catalog # (SE5000)9585

An annular solar eclipse will occur on March 9, 2035. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

Images[edit]

SE2035Mar09A.gif
Animated path

Related eclipses[edit]

Solar eclipses of 2033–2036[edit]

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]

Saros 140[edit]

It is a part of Saros cycle 140, repeating every 18 years, 11 days, containing 71 events. The series started with partial solar eclipse on April 16, 1512. It contains total eclipses from July 21, 1656 through November 9, 1836, hybrid eclipses from November 20, 1854 through December 23, 1908, and annular eclipses from January 3, 1927 through December 7, 2485. The series ends at member 71 as a partial eclipse on June 1, 2774. The longest duration of totality was 4 minutes, 10 seconds on August 12, 1692.

Metonic series[edit]

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.[2]

Inex series[edit]

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Tritos series[edit]

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

In the 22nd century:

  • Solar Saros 147: Annular Solar Eclipse of 2111 Aug 04
  • Solar Saros 148: Total Solar Eclipse of 2122 Jul 04
  • Solar Saros 149: Total Solar Eclipse of 2133 Jun 03
  • Solar Saros 150: Annular Solar Eclipse of 2144 May 03
  • Solar Saros 151: Annular Solar Eclipse of 2155 Apr 02
  • Solar Saros 152: Total Solar Eclipse of 2166 Mar 02
  • Solar Saros 153: Annular Solar Eclipse of 2177 Jan 29
  • Solar Saros 154: Annular Solar Eclipse of 2187 Dec 29
  • Solar Saros 155: Total Solar Eclipse of 2198 Nov 28

In the 23rd century:

  • Solar Saros 156: Annular Solar Eclipse of 2209 Oct 29
  • Solar Saros 157: Annular Solar Eclipse of 2220 Sep 27
  • Solar Saros 158: Total Solar Eclipse of 2231 Aug 28
  • Solar Saros 159: Partial Solar Eclipse of 2242 Jul 28
  • Solar Saros 160: Partial Solar Eclipse of 2253 Jun 26
  • Solar Saros 161: Partial Solar Eclipse of 2264 May 26
  • Solar Saros 162: Partial Solar Eclipse of 2275 Apr 26
  • Solar Saros 163: Partial Solar Eclipse of 2286 Mar 25
  • Solar Saros 164: Partial Solar Eclipse of 2297 Feb 22

References[edit]

  1. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  2. ^ Freeth, Tony. "Note S1: Eclipses & Predictions". plos.org. Retrieved 6 October 2018.

External links[edit]