Solar eclipse of May 10, 1994

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Solar eclipse of May 10, 1994
Type of eclipse
Maximum eclipse
Duration373 sec (6 m 13 s)
Coordinates41°30′N 84°06′W / 41.5°N 84.1°W / 41.5; -84.1
Max. width of band230 km (140 mi)
Times (UTC)
Greatest eclipse17:12:27
Saros128 (57 of 73)
Catalog # (SE5000)9495

An annular solar eclipse occurred on Tuesday, May 10, 1994. It was visible over a wide swath of North America, from Baja California across the Midwest of the United States up through Ontario and Nova Scotia in Canada.

The Annular Eclipse of May 10, 1994[edit]

A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. The eclipse is either total or annular. In a total eclipse, the moon's size from earth is large enough to block all of the disk of the sun.

An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring), that is there is a ring of the sun around the dark moon. An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

The path of annularity crossed four states of Mexico (Baja California Sur, Baja California, Sonora and Chihuahua), the United States, the Canadian provinces of Ontario, Nova Scotia and the southeastern tip of Quebec, Azores Islands except Santa Maria Island, and part of Morocco including the capital city Rabat. Niagara Falls was also covered by the path of annularity.



Related eclipses[edit]

Eclipses of 1994[edit]

Solar eclipses 1993–1996[edit]

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]

Saros 128[edit]

This eclipse is a member of the Solar Saros cycle 128, which includes 73 eclipses occurring in intervals of 18 years and 11 days. The series started with partial solar eclipse on August 29, 984 AD. From May 16, 1417 through June 18, 1471 the series produced total solar eclipses, followed by hybrid solar eclipses from June 28, 1489 through July 31, 1543, and annular solar eclipses from August 11, 1561 through July 25, 2120. The series ends at member 73 as a partial eclipse on November 1, 2282. All eclipses in this series occurs at the Moon’s descending node.

Inex series[edit]

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Metonic cycle[edit]

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.


  1. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.

External links[edit]