Space research

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

Space research is scientific study carried out using scientific equipment in outer space. It includes the use of space technology for a broad spectrum of research disciplines, including Earth science, materials science, biology, medicine, and physics. The term includes scientific payloads everywhere from deep space to low Earth orbit, and is frequently defined to include research in the upper atmosphere using sounding rockets and high-altitude balloons. Space science and space exploration involve the study of outer space itself, which is only part of the broader field of space research. Major Space Research Agencies in the World.


For centuries, the Chinese had been using rockets for ceremonial and military purposes. But it wasn’t until the latter half of the 20th century that rockets were developed to overcome Earth's gravity. Such advances were made simultaneously in three countries by three scientists. In Russia, Konstantin Tsiolkovski, in the United States was Robert Goddard, and in Germany was Hermann Oberth.

After the end of World War II, the United States and the Soviet Union created their own missile programs and space research emerged as a field of scientific investigation based on the advancing rocket technology. In 1948–1949 detectors on V-2 rocket flights detected x-rays from the Sun.[1] Sounding rockets proved useful for studies of the structure of the upper atmosphere. As higher altitudes were reached, the field of space physics emerged with studies of aurorae, the ionosphere and the magnetosphere. Notable as the start of satellite-based space research is the detection of the Van Allen radiation belt by Explorer 1 in 1958, four months after the launch of the first satellite, Sputnik 1 on October 4, 1957. In the following year space planetology emerged with a series of lunar probes, e.g. the first photographs of the far side of the Moon Luna 3 in 1959.

The early space researchers obtained an important international forum with the establishment of the Committee on Space Research (COSPAR) in 1958, which achieved an exchange of scientific information between east and west during the cold war, despite the military origin of the rocket technology underlying the research field.[2]

On April 12, 1961, Russian Lieutenant Yuri Gagarin was the first human to orbit Earth in Vostok 1. In 1961, US astronaut Alan Shepard was the first American in space. And on July 20, 1969, astronaut Neil Armstrong was the first human on the Moon. On April 19, 1971, the Soviet Union launched the Salyut 1, which was the first space station of any kind. On May 14, 1973, Skylab, the first American space station was launched using a modified Saturn V rocket.[3]

Research fields[edit]

Space research includes the following fields of science:[4][5]

Space research by satellites[edit]

Upper Atmosphere Research Satellite[edit]

The Upper Atmosphere Research Satellite was a NASA-led mission launched on September 12, 1991. The 5,900 kg (13,000 lb) satellite was deployed from the Space Shuttle Discovery during the STS-48 mission on 15 September 1991. It was the first multi-instrumented satellite to study various aspects of the Earth's atmosphere and have a better understanding of photochemistry. After 14 years of service, the UARS finished its scientific career in 2005.[6]

International Gamma-Ray Astrophysics Laboratory[edit]

The INTEGRAL is an operational space satellite launched by the European Space Agency in 2002. INTEGRAL provides insight into the most energetic forms of in space, such as black holes, neutron stars, and supernovas.[7] INTEGRAL also plays an important role in researching one of the most exotic and energetic phenomena that occurs in space, gamma-rays.

Hubble Space Telescope[edit]

The Hubble Space Telescope was launched in 1990 and it sped humanity to one of its greatest advances to understand the universe. The discoveries made by the HTS have changed the way scientists look at the universe. It winded the amount of space theories as it sparked new ones. Among its many discoveries, the HTS played a key role in conjunction with other space agencies in the discovery of dark energy, a mysterious force that causes the expansion of the universe to accelerate. More than 10,000 articles have been published by Hubble data, and it has surpassed its expected lifetime.

Gravity and Extreme Magnetism Small Explorer[edit]

The launch of the NASA-led GEMS mission is scheduled for November 2014.[8] The spacecraft will use an X-Ray telescope to measure the polarization of x-rays coming from black holes and neutron stars. It will also conduct research on remnants of supernovae stars that have exploded. Few experiments have been conducted in X-Ray polarization since the 1970s, and scientists expect GEMS will break new ground. Through GEMS, scientists will be able to improve their knowledge in black holes, in particular whether matter around a black hole is confined to a flat-disk, a puffed disk, or a squirting jet. However, it was cancelled.

Space research on space stations[edit]

Salyut 1[edit]

Salyut 1 was the first space station ever built. It was launched in April 19, 1971 by the Soviet Union. The first crew failed entry into the space station. The second crew was able to spend twenty-three days in the space station, but this achievement was quickly overshadowed since the crew died on reentry to Earth. Salyut 1 was intentionally deorbited six months into orbit since it prematurely ran out of fuel.[9]


Skylab was the first American space station. It was 4 times larger than Salut 1. Skylab was launched in May 19, 1973. It rotated through three crews of three during its operational time. Skylab’s experiments confirmed coronal holes and were able to photograph eight solar flares.[10]


From 1986 to 2001, Russian space station Mir served as a permanent microgravity research laboratory in which crews conducted experiments in biology, human biology, physics, astronomy, meteorology and spacecraft systems with a goal of developing technologies required for permanent occupation of outer space.

International Space Station[edit]

The International Space Station has played a key role in advances in space research. Since the arrival of Expedition 1 in November 2000, the station has been continuously occupied for 18 years and 12 days, having exceeded the previous record of almost ten years set by the Russian station Mir.[11] The ISS serves as a microgravity and space environment research laboratory in which crew members conduct tests in biology, physics, astronomy and many other fields.

See also[edit]


  1. ^ A Brief History of High-Energy Astronomy: 1900-1958, NASA web page
  2. ^ Willmore, Peter: COSPAR’s first 50 years, Public Lecture
  3. ^ A Brief History of Space Exploration | The Aerospace Corporation. (n.d.). The Aerospace Corporation | Assuring Space Mission Success. Retrieved May 7, 2013
  4. ^ COSPAR Scientific Structure, COSPAR web page
  5. ^ Advances in Space Research, Elsevier web page
  6. ^ UARS Science main page. (n.d.). UARS Science main page. Retrieved May 7
  7. ^ ESA Science & Technology: Fact Sheet. (n.d.). ESA Science and Technology. Retrieved May 6, 2013
  8. ^ GEMS
  9. ^ Salyut 1 Archived 2008-05-09 at the Wayback Machine.. (n.d.). Encyclopedia Astronautica. Retrieved May 7, 2013
  10. ^ The SkyLab Project. (n.d.). Solar Physics Branch Home Page, Naval Research Laboratory. Retrieved May 7, 2013
  11. ^ NASA - Facts and Figures. (n.d.). NASA - Home. Retrieved May 7, 2013