From Wikipedia, the free encyclopedia
Jump to: navigation, search
Skeletal formula of spermine
Ball and stick model of spermine
Spacefill model of spermine
71-44-3 YesY
3DMet B01325
ChemSpider 1072 N
DrugBank DB00127 YesY
EC Number 200-754-2
Jmol 3D model Interactive image
KEGG C00750 N
MeSH Spermine
PubChem 1103
RTECS number EJ7175000
UN number 3259
Molar mass 202.35 g·mol−1
Appearance Colourless crystals
Odor Ichtyal, ammoniacal
Density 937 mg mL−1
Melting point 28 to 30 °C (82 to 86 °F; 301 to 303 K)
Boiling point 150.1 °C; 302.1 °F; 423.2 K at 700 Pa
log P −0.543
GHS pictograms The corrosion pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS)
GHS signal word DANGER
P280, P305+351+338, P310
Corrosive C
R-phrases R34
S-phrases S26, S36/37/39, S45
Flash point 110 °C (230 °F; 383 K)
Related compounds
Related compounds
Spermidine, Putrescine, Cadaverine, Diethylenetriamine
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YesYN ?)
Infobox references

Spermine is a polyamine involved in cellular metabolism found in all eukaryotic cells. The precursor for synthesis of spermine is the amino acid ornithine. It is found in a wide variety of organisms and tissues and is an essential growth factor in some bacteria. It is found as a polycation at physiological pH. Spermine is associated with nucleic acids and is thought to stabilize helical structure, particularly in viruses.

Crystals of spermine phosphate were first described in 1678, in human semen, by Antonie van Leeuwenhoek.[1] The name spermin was first used by the German chemists Ladenburg and Abel in 1888,[2] and the correct structure of spermine was not finally established until 1926, simultaneously in England (by Dudley, Rosenheim, and Starling)[3] and Germany (by Wrede et al.).[4]

This compound is documented as being what primarily contributes to the characteristic odor of semen.[5]


  1. ^ Leeuwenhoek, A. van (1678) Observationes D. Anthonii Leeuwenhoek, de natis e semine genitali animalculis. Letter dated November 1677. Philos. Trans. Roy. Soc. London, 12,1040-1043.
  2. ^ Ladenburg A., Abel J. (1888) Über das Aethylenimin (Spermin?). Ber. Dtsch. chem. Ges. 21: 758-766
  3. ^ Dudley H. W., Rosenheim O., Starling W. W. (1926) The chemical constitution of spermine. III.Structure and synthesis. Biochemical Journal 20(5): 1082-1094
  4. ^ Wrede F. (1925) Über die aus menschlichem Sperma isolierte Base Spermin. Dtsch. Med. Wochenschr. 51: 24
  5. ^ Klein, David (2013) Organic Chemistry, 2nd Edition.

Further reading[edit]

  • Slocum, R. D., Flores, H. E., "Biochemistry and Physiology of Polyamines in Plants", CRC Press, 1991, USA, ISBN 0-8493-6865-0
  • Uriel Bachrach, "The Physiology of Polyamines", CRC Press, 1989, USA, ISBN 0-8493-6808-1