Thorns, spines, and prickles

From Wikipedia, the free encyclopedia
  (Redirected from Spine (botany))
Jump to: navigation, search

In plant morphology, thorns, spines, and prickles, and in general spinose structures (sometimes called spinose teeth or spinose apical processes), are hard, rigid extensions of leaves, roots, stems or buds with sharp, stiff ends, and generally serve the same function: physically deterring animals from eating the plant material. In common language the terms are used more or less interchangeably, but in botanical terms, thorns are derived from shoots (so that they may or may not be branched, they may or may not have leaves, and they may or may not arise from a bud),[1][2][3][4] spines are derived from leaves (either the entire leaf or some part of the leaf that has vascular bundles inside, like the petiole or a stipule),[1][2][3][4] and prickles are derived from epidermis tissue (so that they can be found anywhere on the plant and do not have vascular bundles inside[4]).[1][2][3]

Leaf margins may also have teeth, and if those teeth are sharp, they are called spinose teeth on a spinose leaf margin[1][2] (some authors consider them a kind of spine[2]). On a leaf apex, if there is an apical process (generally an extension of the midvein), and if it is especially sharp, stiff, and spine-like, it may be referred to as spinose or as a pungent apical process[1] (again, some authors call them a kind of spine[2]). When the leaf epidermis is covered with very long, stiff trichomes (more correctly called bristles in this case;[1] for some authors a kind of prickle[2]), it may be referred to as a hispid vestiture;[1][2][3] if the trichomes are stinging trichomes, it may be called a urent vestiture.[1]

There can be found also spines or spinose structures derived from roots.[5]

Function[edit]

The predominant function of thorns, spines and prickles is deterring herbivory in a mechanical form. For this reason they are classified as physical or mechanical defenses, as opposed to chemical defenses.

Not all functions of spines or glochids are limited to defense from physical attacks by herbivores and other animals. In some cases, spines have been shown to shade or insulate the plants that grow them, thereby protecting them from extreme temperatures. For example, saguaro cactus spines shade the apical meristem in summer, and in members of the Opuntioideae, glochids insulate the apical meristem in winter.

Agrawal et al. (2000) found that spines seem to have little effect on specialist pollinators, on which many plants rely in order to reproduce.[6]

Definitions and technical distinctions[edit]

Pointing or spinose processes can broadly be divided by the presence of vascular tissue: thorns and spines are derived from shoots and leaves respectively, and have vascular bundles inside, whereas prickles (like rose prickles) do not have vascular bundles inside, so that they can be removed more easily and cleanly than thorns and spines.

Thorns are modified stems and arise from buds
Cactus areoles; shoot (yellow), spines (green) and glochids (also spines, green and little)
(A) Thorn or spine
(B) Prickle
A spinose tooth in a leaf margin
A spinose apical process

Thorns[edit]

Thorns are modified branches or stems. They may be simple or branched.

Spines[edit]

Spines are modified leaves, stipules, or parts of leaves, such as extensions of leaf veins. Some authors prefer not to distinguish spines from thorns because, like thorns, and unlike prickles, they commonly contain vascular tissue.[7]

Spines are variously described as petiolar spines (as in Fouquieria), leaflet spines (as in Phoenix), or stipular spines (as in Euphorbia), all of which are examples of spines developing from a part of a leaf containing the petiole, midrib, or a secondary vein.[1] The plants of the cactus family are particularly well known for their dense covering of spines. Cacti often have a particular kind of spine (as found in areoles of Opuntia) called a glochidium or glochid (plural glochidia or glochids), which is very small and deciduous with numerous retrose barbs along its length.[1]

Prickles[edit]

Prickles are comparable to hairs but can be quite coarse (for example, rose prickles). They are extensions of the cortex and epidermis.[8][9] Technically speaking, many plants commonly thought of as having thorns or spines actually have prickles. Roses, for instance, have prickles.[7]

Other structures[edit]

Other similar structures are spinose teeth, spinose apical processes, and trichomes. Trichomes in particular are distinct from thorns, spines, and prickles in that they are much smaller (often microscopic) outgrowths of epidermal tissue, and they are less rigid and more hair-like in appearance; they typically consist of just a few cells of the outermost layer of epidermis, whereas prickles may include cortex tissue. Trichomes are often effective defenses against small insect herbivores; thorns, spines, and prickles are usually only effective against larger herbivores like birds and mammals.

Spinescent is a term describing plants that bear any sharp structures that deter herbivory. It also can refer to the state of tending to be or become spiny in some sense or degree, as in: "...the division of the African acacias on the basis of spinescent stipules versus non-spinescent stipules..."[10]

"Root spines" on the trunk of a Cryosophila species.

There are also spines derived from roots, like the ones on the trunk of the "Root Spine Palms" (Cryosophila spp.). The trunk roots of Cryosophila guagara grow downwards to a length of 6–12 cm, then stop growing and transform into a spine.[5] The anatomy of crown roots on this species (roots among the bases of the living fronds) also alters during their life.[5] They initially grow upwards and then turn down and finally they, too, become spinous.[5] Lateral roots on these two types of roots, as well as those on the stilt roots on this species, also become spinous.[5] Some authors believe that some of these short spiny laterals have a ventilating function so they are 'pneumorhizae'.[5] Short spiny laterals that may have a ventilating funcion may also be found on roots of Iriartea exorrhiza.[5] There are also spines that function as pneumorhizae on the palm Euterpe oleracea.[5] In Cryosophila nana (formerly Acanthorhiza aculeata) there are spine roots or root spines, some authors may prefer "root spines" if the length of the root is less than 10x the thickness, and "spine roots" if the length is more than 10x the thickness.[5] Adventitious spiny roots have also been described on the trunks of dicotyledonous trees from tropical Africa (e.g. Euphorbiaceae, as in Macaranga barteri, Bridelia micrantha and B. pubescens; Ixonanthaceae, Sterculiaceae), and may also be found protecting perennating organs such as tubers and corms (e.g. Dioscorea prehensilis -Dioscoreaceae- and Moraea spp. -Iridaceae- respectively).[5] Short root spines cover the tuberous base of the epiphytic ant-plant Myrmecodia tuberosa (Rubiaceae), these probably give protection to ants which inhabit chambers within the tuber as they wander over the plant's surface. (Jackson 1986[5] and references therein). In many respects the pattern of spine formation is similar to that which occurs in the development of thorns from lateral shoots. (Jackson 1986[5] and references therein).

Evolution[edit]

It has been proposed that thorny structures may have first evolved as a defense mechanism in plants growing in sandy environments that provided inadequate resources for fast regeneration of damage.[11][12] However, this suggestion was unsupported by any argument to discount the likelihood that spiny defenses might have been developed as a means of defense in resource-rich environments, where herbivory might have been more intense than in the hypothesized sandy environments.[citation needed][clarification needed]

Morphological variation[edit]

Spinose structures occur in a wide variety of ecologies, and their morphology also varies greatly. They occur as:

Some thorns are hollow and act as myrmecodomatia; others (e.g. in Crataegus monogyna) bear leaves. The thorns of many species are branched (e.g. in Crataegus crus-galli and Carissa macrocarpa).

In human culture[edit]

Primitive humans are known to have used thorns as tools. Human history records a variety of cultural references to sharp-pointed plant defensive mechanisms:

  • The Book of Genesis recounts the creation of thorns as one of the punishments for the original sin of Adam and Eve, stating, "Thorns also and thistles shall [the ground] bring forth to thee; and thou shalt eat the herb of the field." Genesis, 3:18. One of the most enduring cultural images is the Crown of Thorns described in the Bible as having been placed on the head of Jesus Christ before his crucifixion. It is mentioned in the Gospels of Matthew (27:29), Mark (15:17), and John (19:2,5) and is often alluded to by the early Christian Fathers, such as Clement of Alexandria, Origen, and others. For example, John's Gospel states that "the soldiers plaited a crown of thorns, and put it on his head" (KJV, ch. 19). The biblical account does not specify what kind of thorns were involved, and leaves no clues from which to determine whether these were biologically classifiable as thorns, spines, or prickles.
  • An early popular myth involving a thorn is that of Androcles, a fugitive slave in ancient Greece who was said to have befriended a lion by pulling a thorn from the lion's paw.[16]
  • The status of the Scottish Thistle as the national emblem of Scotland is founded on the story that an invading Norse army attempting a night attack was betrayed when they encountered a thistle in the dark.

Plants bearing thorns, spines, or prickles are often used as a defense against burglary, being strategically planted below windows or around the entire perimeter of a property.[17] They also have been used to protect crops and livestock against marauding animals. Examples include hawthorn hedges in Europe, Agaves in the Americas and in other countries where they have been introduced, Osage Orange in the prairie states of the US, and Sansevieria in Africa.[18]

In modern times, the study of acanthochronology has used the oxygen isotope composition of spines from saguaro cactus to determine historical changes in local rainfall and reconstruct climate and plant ecophysiology over the plant's lifetime.

See also[edit]

References[edit]

General references:

  • Simpson, M. G. 2010. "Plant Morphology". In: Plant Systematics, 2nd. edition. Elsevier Academic Press. Chapter 9.
  • Judd, Campbell, Kellogg, Stevens, Donoghue. 2007. "Structural and Biochemical Characters". In: Plant Systematics, a phylogenetic approach, third edition. Chapter 4.
  1. ^ a b c d e f g h i j Simpson, M. G. 2010. "Plant Morphology". In: Plant Systematics, 2nd. edition. Elsevier Academic Press. Chapter 9.
  2. ^ a b c d e f g h Judd, Campbell, Kellogg, Stevens, Donoghue. 2007. "Structural and Biochemical Characters". In: Plant Systematics, a phylogenetic approach, third edition. Chapter 4.
  3. ^ a b c d Turner et al. 2005, Sonoran Desert Plants, an Ecological Atlas. University of Arizona Press.
  4. ^ a b c Van Wyk, Van Wyk. 2007. How to identify trees in South Africa. Struik.
  5. ^ a b c d e f g h i j k l Jackson, M. B. (ed.) 1986. New Root Formation in Plants and Cuttings. Series Developments in plant and soil sciences nº 20. Martinus Nijhoff Publishers, a member of the Kluwer Academic Publishers Group. Da ordrecht / Boston / Lancaster. p.80-81. https://books.google.com.ar/books?id=gAv8CAAAQBAJ&pg=PA80
  6. ^ Agrawal, A, A., Rudgers, A, J., Botsford, W, L., Cutler, S., Gorin, B, J., Lundquist, C, J., Spitzer, W, B., & Swann, L, A. (2000). Benefits and Constraints on Plant Defense against Herbivores: Spines Influence the Legitimate and Illegitimate Flower Visitors of Yellow Star Thistle, Centaurea solstitialis L. (Asteraceae). JSTOR, 45(1), 1-5. http://www.jstor.org/stable/3672545. retrieved 2012-03-20
  7. ^ a b Bell, A.D. 1997. Plant form: an illustrated guide to flowering plant morphology. Oxford University Press, Oxford, U.K. preview in google books
  8. ^ Van Wyk, Braam (2007). How to Identify Trees in Southern Africa (illustrated ed.). Struik. p. 184. ISBN 9781770072404. 
  9. ^ Sengbusch, Peter (2003-07-31). "Cross-Section Through the Prickle of a Rose". Retrieved 2009-04-27. 
  10. ^ Ross, J. H. "A conspectus of the African Acacia species." Series: Memoirs of the Botanical Survey of South Africa, No. 44 Botanical Research Institute, Dept. of Agricultural Technical Services, Pretoria, 1979
  11. ^ Steve Brill, Evelyn Dean, Identifying and Harvesting Edible and Medicinal Plants (1994), p. 17.
  12. ^ August Weismann, John Arthur Thomson, Margaret R. Thomson, The Evolution Theory (1904), p. 124.
  13. ^ Bihrmann.com
  14. ^ Dyer, R. Allen, “The Genera of Southern African Flowering Plants”, Vol 2. ISBN 0-621-02863-0, 1976
  15. ^ Anderson, Edward F., The Cactus Family, Pub: Timber Press 2001 ISBN 978-0-88192-498-5
  16. ^ Carrington, Norman T., Shaw, George Bernard. Androcles and the Lion: Brodies Notes. Publisher: Macmillan, 1976, ISBN 978-0-330-50050-0
  17. ^ Marcus Felson, Crime and Nature (2006), p. 288.
  18. ^ Hunter, J. A., "Hunter" Publisher: Buccaneer Books, 1993, ISBN 978-1-56849-109-7
  • Esau, K. 1965. Plant Anatomy, 2nd Edition. John Wiley & Sons. 767 pp.
  • Llamas, K. A. 2003. Tropical Flowering Plants. Timber Press, Portland. 423 pp.

External links[edit]