Pentic 6-cubes

From Wikipedia, the free encyclopedia
  (Redirected from Stericated 6-demicube)
Jump to: navigation, search
6-demicube t0 D5.svg
6-demicube
(half 6-cube)
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
6-demicube t04 D5.svg
Pentic 6-cube
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
6-demicube t014 D5.svg
Penticantic 6-cube
CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
6-demicube t024 D5.svg
Pentiruncic 6-cube
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
6-demicube t0124 D5.svg
Pentiruncicantic 6-cube
CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
6-demicube t034 D5.svg
Pentisteric 6-cube
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
6-demicube t0134 D5.svg
Pentistericantic 6-cube
CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
6-demicube t0234 D5.svg
Pentisteriruncic 6-cube
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
6-demicube t01234 D5.svg
Pentisteriruncicantic 6-cube
CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Orthogonal projections in D6 Coxeter plane

In six-dimensional geometry, a pentic 6-cube is a convex uniform 6-polytope.

There are 8 pentic forms of the 6-cube.

Pentic 6-cube[edit]

Pentic 6-cube
Type uniform 6-polytope
Schläfli symbol t0,4{3,34,1}
h5{4,34}
Coxeter-Dynkin diagram CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
5-faces
4-faces
Cells
Faces
Edges 1440
Vertices 192
Vertex figure
Coxeter groups D6, [33,1,1]
Properties convex

The pentic 6-cube, CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png, has half of the vertices of a pentellated 6-cube, CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png.

Alternate names[edit]

  • Stericated 6-demicube/demihexeract
  • Small cellated hemihexeract (Acronym: sochax) (Jonathan Bowers)[1]

Cartesian coordinates[edit]

The Cartesian coordinates for the vertices of a pentic 6-cube centered at the origin are coordinate permutations:

(±1,±1,±1,±1,±1,±3)

with an odd number of plus signs.

Images[edit]

orthographic projections
Coxeter plane B6
Graph 6-demicube t04 B6.svg
Dihedral symmetry [12/2]
Coxeter plane D6 D5
Graph 6-demicube t04 D6.svg 6-demicube t04 D5.svg
Dihedral symmetry [10] [8]
Coxeter plane D4 D3
Graph 6-demicube t04 D4.svg 6-demicube t04 D3.svg
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph 6-demicube t04 A5.svg 6-demicube t04 A3.svg
Dihedral symmetry [6] [4]

Penticantic 6-cube[edit]

Penticantic 6-cube
Type uniform 6-polytope
Schläfli symbol t0,1,4{3,34,1}
h2,5{4,34}
Coxeter-Dynkin diagram CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
5-faces
4-faces
Cells
Faces
Edges 9600
Vertices 1920
Vertex figure
Coxeter groups D6, [33,1,1]
Properties convex

The penticantic 6-cube, CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png, has half of the vertices of a penticantellated 6-cube, CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png.

Alternate names[edit]

  • Steritruncated 6-demicube/demihexeract
  • cellitruncated hemihexeract (Acronym: cathix) (Jonathan Bowers)[2]

Cartesian coordinates[edit]

The Cartesian coordinates for the vertices of a stericantitruncated demihexeract centered at the origin are coordinate permutations:

(±1,±1,±3,±3,±3,±5)

with an odd number of plus signs.

Images[edit]

orthographic projections
Coxeter plane B6
Graph 6-demicube t014 B6.svg
Dihedral symmetry [12/2]
Coxeter plane D6 D5
Graph 6-demicube t014 D6.svg 6-demicube t014 D5.svg
Dihedral symmetry [10] [8]
Coxeter plane D4 D3
Graph 6-demicube t014 D4.svg 6-demicube t014 D3.svg
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph 6-demicube t014 A5.svg 6-demicube t014 A3.svg
Dihedral symmetry [6] [4]

Pentiruncic 6-cube[edit]

Pentiruncic 6-cube
Type uniform 6-polytope
Schläfli symbol t0,2,4{3,34,1}
h3,5{4,34}
Coxeter-Dynkin diagram CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
5-faces
4-faces
Cells
Faces
Edges 10560
Vertices 1920
Vertex figure
Coxeter groups D6, [33,1,1]
Properties convex

The pentiruncic 6-cube, CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png, has half of the vertices of a pentiruncinated 6-cube (penticantellated 6-orthoplex), CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png.

Alternate names[edit]

  • Stericantellated 6-demicube/demihexeract
  • cellirhombated hemihexeract (Acronym: crohax) (Jonathan Bowers)[3]

Cartesian coordinates[edit]

The Cartesian coordinates for the vertices of a pentiruncic 6-cube centered at the origin are coordinate permutations:

(±1,±1,±1,±3,±3,±5)

with an odd number of plus signs.

Images[edit]

orthographic projections
Coxeter plane B6
Graph 6-demicube t024 B6.svg
Dihedral symmetry [12/2]
Coxeter plane D6 D5
Graph 6-demicube t024 D6.svg 6-demicube t024 D5.svg
Dihedral symmetry [10] [8]
Coxeter plane D4 D3
Graph 6-demicube t024 D4.svg 6-demicube t024 D3.svg
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph 6-demicube t024 A5.svg 6-demicube t024 A3.svg
Dihedral symmetry [6] [4]

Pentiruncicantic 6-cube[edit]

Pentiruncicantic 6-cube
Type uniform 6-polytope
Schläfli symbol t0,1,2,4{3,32,1}
h2,3,5{4,34}
Coxeter-Dynkin diagram CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
5-faces
4-faces
Cells
Faces
Edges 20160
Vertices 5760
Vertex figure
Coxeter groups D6, [33,1,1]
Properties convex

The pentiruncicantic 6-cube, CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png, has half of the vertices of a pentiruncicantellated 6-cube or (pentiruncicantellated 6-orthoplex), CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png

Alternate names[edit]

  • Stericantitruncated demihexeract, stericantitruncated 7-demicube
  • Great cellated hemihexeract (Acronym: cagrohax) (Jonathan Bowers)[4]

Cartesian coordinates[edit]

The Cartesian coordinates for the vertices of a pentiruncicantic 6-cube centered at the origin are coordinate permutations:

(±1,±1,±3,±3,±5,±7)

with an odd number of plus signs.

Images[edit]

orthographic projections
Coxeter plane B6
Graph 6-demicube t0124 B6.svg
Dihedral symmetry [12/2]
Coxeter plane D6 D5
Graph 6-demicube t0124 D6.svg 6-demicube t0124 D5.svg
Dihedral symmetry [10] [8]
Coxeter plane D4 D3
Graph 6-demicube t0124 D4.svg 6-demicube t0124 D3.svg
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph 6-demicube t0124 A5.svg 6-demicube t0124 A3.svg
Dihedral symmetry [6] [4]

Pentisteric 6-cube[edit]

Pentisteric 6-cube
Type uniform 6-polytope
Schläfli symbol t0,3,4{3,34,1}
h4,5{4,34}
Coxeter-Dynkin diagram CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
5-faces
4-faces
Cells
Faces
Edges 5280
Vertices 960
Vertex figure
Coxeter groups D6, [33,1,1]
Properties convex

The pentisteric 6-cube, CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png, has half of the vertices of a pentistericated 6-cube (pentitruncated 6-orthoplex), CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png

Alternate names[edit]

  • Steriruncinated 6-demicube/demihexeract
  • Small cellipriamated hemihexeract (Acronym: cophix) (Jonathan Bowers)[5]

Cartesian coordinates[edit]

The Cartesian coordinates for the vertices of a pentisteric 6-cube centered at the origin are coordinate permutations:

(±1,±1,±1,±1,±3,±5)

with an odd number of plus signs.

Images[edit]

orthographic projections
Coxeter plane B6
Graph 6-demicube t034 B6.svg
Dihedral symmetry [12/2]
Coxeter plane D6 D5
Graph 6-demicube t034 D6.svg 6-demicube t034 D5.svg
Dihedral symmetry [10] [8]
Coxeter plane D4 D3
Graph 6-demicube t034 D4.svg 6-demicube t034 D3.svg
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph 6-demicube t034 A5.svg 6-demicube t034 A3.svg
Dihedral symmetry [6] [4]

Pentistericantic 6-cube[edit]

Pentistericantic 6-cube
Type uniform 6-polytope
Schläfli symbol t0,1,3,4{3,34,1}
h2,4,5{4,34}
Coxeter-Dynkin diagram CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
5-faces
4-faces
Cells
Faces
Edges 23040
Vertices 5760
Vertex figure
Coxeter groups D6, [33,1,1]
Properties convex

The pentistericantic 6-cube, CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png, has half of the vertices of a pentistericantellated 6-cube (pentiruncitruncated 6-orthoplex), CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png.

Alternate names[edit]

  • Steriruncicantitruncated demihexeract/7-demicube
  • cellitruncated hemihexeract (Acronym: capthix) (Jonathan Bowers)[6]

Cartesian coordinates[edit]

The Cartesian coordinates for the vertices of a pentistericantic 6-cube centered at the origin are coordinate permutations:

(±1,±1,±3,±3,±5,±7)

with an odd number of plus signs.

Images[edit]

orthographic projections
Coxeter plane B6
Graph 6-demicube t0134 B6.svg
Dihedral symmetry [12/2]
Coxeter plane D6 D5
Graph 6-demicube t0134 D6.svg 6-demicube t0134 D5.svg
Dihedral symmetry [10] [8]
Coxeter plane D4 D3
Graph 6-demicube t0134 D4.svg 6-demicube t0134 D3.svg
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph 6-demicube t0134 A5.svg 6-demicube t0134 A3.svg
Dihedral symmetry [6] [4]

Pentisteriruncic 6-cube[edit]

Pentisteriruncic 6-cube
Type uniform 6-polytope
Schläfli symbol t0,2,3,4{3,34,1}
h3,4,5{4,34}
Coxeter-Dynkin diagram CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
5-faces
4-faces
Cells
Faces
Edges 15360
Vertices 3840
Vertex figure
Coxeter groups D6, [33,1,1]
Properties convex

The pentisteriruncic 6-cube, CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png, has half of the vertices of a pentisteriruncinated 6-cube (penticantitruncated 6-orthoplex), CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png.

Alternate names[edit]

  • Steriruncicantellated 6-demicube/demihexeract
  • Celliprismatorhombated hemihexeract (Acronym: caprohax) (Jonathan Bowers)[7]

Cartesian coordinates[edit]

The Cartesian coordinates for the vertices of a pentisteriruncic 6-cube centered at the origin are coordinate permutations:

(±1,±1,±1,±3,±5,±7)

with an odd number of plus signs.

Images[edit]

orthographic projections
Coxeter plane B6
Graph 6-demicube t0234 B6.svg
Dihedral symmetry [12/2]
Coxeter plane D6 D5
Graph 6-demicube t0234 D6.svg 6-demicube t0234 D5.svg
Dihedral symmetry [10] [8]
Coxeter plane D4 D3
Graph 6-demicube t0234 D4.svg 6-demicube t0234 D3.svg
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph 6-demicube t0234 A5.svg 6-demicube t0234 A3.svg
Dihedral symmetry [6] [4]

Pentisteriruncicantic 6-cube[edit]

Pentisteriruncicantic 6-cube
Type uniform 6-polytope
Schläfli symbol t0,1,2,3,4{3,32,1}
h2,3,4,5{4,34}
Coxeter-Dynkin diagram CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
5-faces
4-faces
Cells
Faces
Edges 34560
Vertices 11520
Vertex figure
Coxeter groups D6, [33,1,1]
Properties convex

The pentisteriruncicantic 6-cube, CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png, has half of the vertices of a pentisteriruncicantellated 6-cube (pentisteriruncicantitruncated 6-orthoplex), CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png.

Alternate names[edit]

  • Steriruncicantitruncated 6-demicube/demihexeract
  • Great cellated hemihexeract (Acronym: gochax) ((Jonathan Bowers)[8]

Cartesian coordinates[edit]

The Cartesian coordinates for the vertices of a pentisteriruncicantic 6-cube centered at the origin are coordinate permutations:

(±1,±1,±3,±3,±5,±7)

with an odd number of plus signs.

Images[edit]

orthographic projections
Coxeter plane B6
Graph 6-demicube t01234 B6.svg
Dihedral symmetry [12/2]
Coxeter plane D6 D5
Graph 6-demicube t01234 D6.svg 6-demicube t01234 D5.svg
Dihedral symmetry [10] [8]
Coxeter plane D4 D3
Graph 6-demicube t01234 D4.svg 6-demicube t01234 D3.svg
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph 6-demicube t01234 A5.svg 6-demicube t01234 A3.svg
Dihedral symmetry [6] [4]

Related polytopes[edit]

There are 47 uniform polytopes with D6 symmetry, 31 are shared by the BC6 symmetry, and 16 are unique:

Notes[edit]

  1. ^ Klitzing, (x3o3o *b3o3x3o3o - sochax)
  2. ^ Klitzing, (x3x3o *b3o3x3o3o - cathix)
  3. ^ Klitzing, (x3o3o *b3x3x3o3o - crohax)
  4. ^ Klitzing, (x3x3o *b3x3x3o3o - cagrohax)
  5. ^ Klitzing, (x3o3o *b3o3x3x3x - cophix)
  6. ^ Klitzing, (x3x3o *b3o3x3x3x - capthix)
  7. ^ Klitzing, (x3o3o *b3x3x3x3x - caprohax)
  8. ^ Klitzing, (x3x3o *b3x3x3x3o - gochax)

References[edit]

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • Klitzing, Richard. "6D uniform polytopes (polypeta)".  x3o3o *b3o3x3o3o - sochax, x3x3o *b3o3x3o3o - cathix, x3o3o *b3x3x3o3o - crohax, x3x3o *b3x3x3o3o - cagrohax, x3o3o *b3o3x3x3x - cophix, x3x3o *b3o3x3x3x - capthix, x3o3o *b3x3x3x3x - caprohax, x3x3o *b3x3x3x3o - gochax

External links[edit]

Fundamental convex regular and uniform polytopes in dimensions 2–10
Family An Bn I2(p) / Dn E6 / E7 / E8 / E9 / E10 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform 4-polytope 5-cell 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds