Stieltjes moment problem

From Wikipedia, the free encyclopedia
Jump to: navigation, search

In mathematics, the Stieltjes moment problem, named after Thomas Joannes Stieltjes, seeks necessary and sufficient conditions for a sequence { mn, : n = 0, 1, 2, ... } to be of the form

for some measure μ. If such a function μ exists, one asks whether it is unique.

The essential difference between this and other well-known moment problems is that this is on a half-line [0, ∞), whereas in the Hausdorff moment problem one considers a bounded interval [0, 1], and in the Hamburger moment problem one considers the whole line (−∞, ∞).




Then { mn : n = 1, 2, 3, ... } is a moment sequence of some measure on with infinite support if and only if for all n, both

mn : n = 1, 2, 3, ... } is a moment sequence of some measure on with finite support of size m if and only if for all , both

and for all larger


There are several sufficient conditions for uniqueness, for example, Carleman's condition, which states that the solution is unique if


  • Reed, Michael; Simon, Barry (1975), Fourier Analysis, Self-Adjointness, Methods of modern mathematical physics, 2, Academic Press, p. 341 (exercise 25), ISBN 0-12-585002-6