Stratospheric aerosol injection

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
refer to caption and image description
Proposed tethered balloon to inject sulfate aerosols into the stratosphere.

Stratospheric aerosol injection is a proposed method of solar geoengineering (or solar radiation modification) to reduce human-induced climate change. This would introduce aerosols into the stratosphere to create a cooling effect via global dimming, which occurs naturally from volcanic eruptions.[1] It appears that stratospheric aerosol injection, at a moderate intensity, could counter most changes to temperature and precipitation, take effect rapidly, have low direct implementation costs, and be reversible in its direct climatic effects.[2] The Intergovernmental Panel on Climate Change concludes that it "is the most-researched [solar geoengineering] method, with high agreement that it could limit warming to below 1.5°C."[3] However, like other solar geoengineering approaches, stratospheric aerosol injection would do so imperfectly and other effects are possible, particularly if used in a suboptimal manner.[4]

Various forms of sulfur have been proposed as the injected substance, in part this is how volcanic eruptions cool the planet.[5] Others such as calcite are also under consideration.[6] The leading proposed method of delivery is custom aircraft.[7]

Methods[edit]

Materials[edit]

Precursor gases such as sulfur dioxide and hydrogen sulfide have been considered. According to estimates, "one kilogram of well placed sulfur in the stratosphere would roughly offset the warming effect of several hundred thousand kilograms of carbon dioxide."[8] One study calculated the impact of injecting sulfate particles, or aerosols, every one to four years into the stratosphere in amounts equal to those lofted by the volcanic eruption of Mount Pinatubo in 1991,[9] but did not address the many technical and political challenges involved in potential solar geoengineering efforts.[10] Use of gaseous sulfuric acid appears to reduce the problem of aerosol growth.[11] Materials such as photophoretic particles, titanium dioxide, and diamond are also under consideration.[12][13][14]

Delivery[edit]

Various techniques have been proposed for delivering the aerosol or precursor gases.[15] The required altitude to enter the stratosphere is the height of the tropopause, which varies from 11 kilometres (6.8 mi/36,000 ft) at the poles to 17 kilometers (11 mi/58,000 ft) at the equator.

  • Civilian aircraft including the Boeing 747-400 and Gulfstream G550/650, C-37A could be modified at relatively low cost to deliver sufficient amounts of required material according to one study,[16] but a later metastudy suggests a new aircraft would be needed but easy to develop.[17]
  • Military aircraft such as the F15-C variant of the F-15 Eagle have the necessary flight ceiling, but limited payload. Military tanker aircraft such as the KC-135 Stratotanker and KC-10 Extender also have the necessary ceiling and have greater payload capacity.[18]
  • Modified artillery might have the necessary capability,[19] but requires a polluting and expensive gunpowder charge to loft the payload. Railgun artillery could be a non-polluting alternative.
  • High-altitude balloons can be used to lift precursor gases, in tanks, bladders or in the balloons' envelope.

Injection system[edit]

The latitude and distribution of injection locations has been discussed by various authors. Whilst a near-equatorial injection regime will allow particles to enter the rising leg of the Brewer-Dobson circulation, several studies have concluded that a broader, and higher-latitude, injection regime will reduce injection mass flow rates and/or yield climatic benefits.[20][21] Concentration of precursor injection in a single longitude appears to be beneficial, with condensation onto existing particles reduced, giving better control of the size distribution of aerosols resulting.[22] The long residence time of carbon dioxide in the atmosphere may require a millennium-timescale commitment to SRM[23] if aggressive emissions abatement is not pursued simultaneously.

Aerosol formation[edit]

Primary aerosol formation, also known as homogeneous aerosol formation, results when gaseous SO
2
combines with oxygen and water to form aqueous sulfuric acid (H2SO4). This acidic liquid solution is in the form of a vapor and condenses onto particles of solid matter, either meteoritic in origin or from dust carried from the surface to the stratosphere. Secondary or heterogeneous aerosol formation occurs when H2SO4 vapor condenses onto existing aerosol particles. Existing aerosol particles or droplets also run into each other, creating larger particles or droplets in a process known as coagulation. Warmer atmospheric temperatures also lead to larger particles. These larger particles would be less effective at scattering sunlight because the peak light scattering is achieved by particles with a diameter of 0.3 μm.[12]

Advantages of the technique[edit]

The advantages of this approach in comparison to other possible means of solar geoengineering are:

  • Mimics a natural process:[24] Stratospheric sulfur aerosols are created by existing natural processes (especially volcanoes), whose impacts have been studied via observations.[25] This contrasts with other, more speculative solar geoengineering techniques which do not have natural analogs (e.g., space sunshade).
  • Technological feasibility: In contrast to other proposed solar geoengineering techniques, such as marine cloud brightening, much of the required technology is pre-existing: chemical manufacturing, artillery shells, high-altitude aircraft, weather balloons, etc.[5] Unsolved technical challenges include methods to deliver the material in controlled diameter with good scattering properties.
  • Scalability: Some solar geoengineering techniques, such as cool roofs and ice protection, can only provide a limited intervention in the climate due to insufficient scale—one cannot reduce the temperature by more than a certain amount with each technique. Research has suggested that this technique may have a high radiative 'forcing potential'.[26]

Uncertainties[edit]

It is uncertain how effective any solar geoengineering technique would be, due to the difficulties modeling their impacts and the complex nature of the global climate system. Certain efficacy issues are specific to stratospheric aerosols.

  • Lifespan of aerosols: Tropospheric sulfur aerosols are short lived.[27] Delivery of particles into the lower stratosphere in the arctic will typically ensure that they remain aloft only for a few weeks or months, as air in this region is predominantly descending.[28] To ensure endurance, higher-altitude delivery is needed, ensuring a typical endurance of several years by enabling injection into the rising leg of the Brewer-Dobson circulation above the tropical tropopause. Further, sizing of particles is crucial to their endurance.[29]
  • Aerosol delivery: There are two proposals for how to create a stratospheric sulfate aerosol cloud, either through release of a precursor gas (SO
    2
    ) or the direct release of sulfuric acid (H
    2
    SO
    4
    ) and these face different challenges.[30] If SO
    2
    gas is released it will oxidize to form H
    2
    SO
    4
    and then condense to form droplets far from the injection site.[31] Releasing SO
    2
    would not allow control over the size of the particles that are formed but would not require a sophisticated release mechanism. Simulations suggest that as the SO
    2
    release rate is increased there would be diminishing returns on the cooling effect, as larger particles would be formed which have a shorter lifetime and are less effective scatterers of light.[32] If H
    2
    SO
    4
    is released directly then the aerosol particles would form very quickly and in principle the particle size could be controlled although the engineering requirements for this are uncertain. Assuming a technology for direct H
    2
    SO
    4
    release could be conceived and developed, it would allow control over the particle size to possibly alleviate some of the inefficiencies associated with SO
    2
    release.[30]

Cost[edit]

Early studies suggest that stratospheric aerosol injection might have relatively low direct cost. The annual cost of delivering 5 million tons of an albedo enhancing aerosol (sufficient to offset the expected warming over the next century) to an altitude of 20 to 30 km is estimated at US$2 billion to 8 billion.[33] In comparison, the annual cost estimates for climate damage or emission mitigation range from US$200 billion to 2 trillion.[33]

A 2016 study finds the cost per 1 W/m2 of cooling to be between 5-50 billion USD/yr.[34] Because larger particles are less efficient at cooling and drop out of the sky faster, the unit-cooling cost is expected to increase over time as increased dose leads to larger, but less efficient, particles by mechanism such as coalescence and Ostwald ripening.[35] Assume RCP8.5, -5.5 W/m2 of cooling would be required by 2100 to maintain 2020 climate. At dose level required to provide this cooling, the net efficiency per mass of injected aerosols would reduce to below 50% compared to low-level deployment (below 1W/m2).[36] At a total dose of -5.5 W/m2, the cost would be between 55-550 billion USD/yr when efficiency reduction is also taken into account, bringing annual expenditure to levels comparable to other mitigation alternatives.

Other possible side effects[edit]

Solar geoengineering in general poses various problems and risks. However, certain problems are specific to or more pronounced with stratospheric sulfide injection.[37]

  • Ozone depletion: is a potential side effect of sulfur aerosols;[38][39] and these concerns have been supported by modelling.[40] However, this may only occur if high enough quantities of aerosols drift to, or are deposited in, Polar stratospheric clouds before the levels of CFCs and other ozone destroying gases fall naturally to safe levels because stratospheric aerosols, together with the ozone destroying gases, are responsible for ozone depletion.[41] The injection of other aerosols that may be safer such as calcite has therefore been proposed.[6] The injection of non-sulfide aerosols like calcite (limestone) would also have a cooling effect while counteracting ozone depletion and would be expected to reduce other side effects.[6]
  • Whitening of the sky: There would be an effect on the appearance of the sky from stratospheric aerosol injection, notably a slight hazing of blue skies and a change in the appearance of sunsets.[42][43] How stratospheric aerosol injection may affect clouds remains uncertain.[44] According to a study on cleaner air, the reduction of aerosol pollution has led to solar brightening in Europe and North America, which has been responsible for an increase in U.S. corn production over the past 30 years.[45]
  • Stratospheric temperature change: Aerosols can also absorb some radiation from the Sun, the Earth and the surrounding atmosphere. This changes the surrounding air temperature and could potentially impact on the stratospheric circulation, which in turn may impact the surface circulation.[46][39]
  • Deposition and acid rain: The surface deposition of sulfate injected in the stratosphere may also have an impact on ecosystems.[47] However, the amount and wide dispersal of injected aerosols means that their impact on particulate concentrations and acidity of precipitation would be very small.[48]

Outdoors research[edit]

Almost all work to date on stratospheric sulfate injection has been limited to modelling and laboratory work.[citation needed] In 2009, a Russian team tested aerosol formation in the lower troposphere using helicopters.[49] In 2012, the Stratospheric Particle Injection for Climate Engineering (SPICE) project planned on a limited field test in order to evaluate a potential delivery system, but this component of the project was canceled. In 2015, David Keith and Gernot Wagner described a potential field experiment, the Stratospheric Controlled Perturbation Experiment (SCoPEx), using stratospheric calcium carbonate[50] injection,[51] but as of October 2020 the time and place had not yet been determined.[52]

Governance[edit]

Most of the existing governance of stratospheric sulfate aerosols is from that which is applicable to solar radiation management more broadly. However, some existing legal instruments would be relevant to stratospheric sulfate aerosols specifically. At the international level, the Convention on Long-Range Transboundary Air Pollution (CLRTAP Convention) obligates those countries which have ratified it to reduce their emissions of particular transboundary air pollutants. Notably, both solar radiation management and climate change (as well as greenhouse gases) could satisfy the definition of "air pollution" which the signatories commit to reduce, depending on their actual negative effects.[53] Commitments to specific values of the pollutants, including sulfates, are made through protocols to the CLRTAP Convention. Full implementation or large scale climate response field tests of stratospheric sulfate aerosols could cause countries to exceed their limits. However, because stratospheric injections would be spread across the globe instead of concentrated in a few nearby countries, and could lead to net reductions in the "air pollution" which the CLRTAP Convention is to reduce.

The stratospheric injection of sulfate aerosols would cause the Vienna Convention for the Protection of the Ozone Layer to be applicable due to their possible deleterious effects on stratospheric ozone. That treaty generally obligates its Parties to enact policies to control activities which "have or are likely to have adverse effects resulting from modification or likely modification of the ozone layer."[54] The Montreal Protocol to the Vienna Convention prohibits the production of certain ozone depleting substances, via phase outs. Sulfates are presently not among the prohibited substances.

In the United States, the Clean Air Act might give the United States Environmental Protection Agency authority to regulate stratospheric sulfate aerosols.[55]

See also[edit]

References[edit]

  1. ^ Crutzen, P. J. (2006). "Albedo Enhancement by Stratospheric Sulfur Injections: A Contribution to Resolve a Policy Dilemma?". Climatic Change. 77 (3–4): 211–220. Bibcode:2006ClCh...77..211C. doi:10.1007/s10584-006-9101-y.
  2. ^ Climate Intervention: Reflecting Sunlight to Cool Earth. Washington, D.C.: National Academies Press. June 23, 2015. doi:10.17226/18988. ISBN 9780309314824.
  3. ^ Global warming of 1.5°C. Intergovernmental Panel on Climate Change. [Geneva, Switzerland]. 2018. p. 350. ISBN 9789291691517. OCLC 1056192590.CS1 maint: others (link)
  4. ^ Daisy Dunne (March 11, 2019). "Halving global warming with solar geoengineering could 'offset tropical storm risk'". CarbonBrief. Retrieved March 14, 2019.
  5. ^ a b Rasch, Philip J; Tilmes, Simone; Turco, Richard P; Robock, Alan; Oman, Luke; Chen, Chih-Chieh (Jack); Stenchikov, Georgiy L; Garcia, Rolando R (August 29, 2008). "An overview of geoengineering of climate using stratospheric sulphate aerosols". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 366 (1882): 4007–4037. Bibcode:2008RSPTA.366.4007R. doi:10.1098/rsta.2008.0131. PMID 18757276. S2CID 9869660.
  6. ^ a b c Keith, David W.; Weisenstein, Debra K.; Dykema, John A.; Keutsch, Frank N. (December 27, 2016). "Stratospheric solar geoengineering without ozone loss". Proceedings of the National Academy of Sciences. 113 (52): 14910–14914. Bibcode:2016PNAS..11314910K. doi:10.1073/pnas.1615572113. PMC 5206531. PMID 27956628.
  7. ^ Pierce, J. R.; Weisenstein, D. K.; Heckendorn, P.; Peter, T.; Keith, D. W. (2010). "Efficient formation of stratospheric aerosol for climate engineering by emission of condensible vapor from aircraft". Geophysical Research Letters. 37 (18): n/a. Bibcode:2010GeoRL..3718805P. doi:10.1029/2010GL043975. S2CID 15934540.
  8. ^ David G. Victor, M. Granger Morgan, Jay Apt, John Steinbruner, and Katharine Ricke (March–April 2009). "The Geoengineering Option:A Last Resort Against Global Warming?". Geoengineering. Council on Foreign Affairs. Archived from the original on April 21, 2010. Retrieved August 19, 2009.CS1 maint: multiple names: authors list (link)
  9. ^ Wigley, T. M. L. (October 20, 2006). "A Combined Mitigation/Geoengineering Approach to Climate Stabilization". Science. 314 (5798): 452–454. Bibcode:2006Sci...314..452W. doi:10.1126/science.1131728. PMID 16973840. S2CID 40846810.
  10. ^ "Stratospheric Injections Could Help Cool Earth, Computer Model Shows – News Release". National Center for Atmospheric Research. September 14, 2006. Archived from the original on May 8, 2017. Retrieved June 15, 2011.
  11. ^ Pierce, J. R.; Weisenstein, D. K.; Heckendorn, P.; Peter, T.; Keith, D. W. (2010). "Efficient formation of stratospheric aerosol for climate engineering by emission of condensible vapor from aircraft". Geophysical Research Letters. 37 (18): n/a. Bibcode:2010GeoRL..3718805P. doi:10.1029/2010GL043975. S2CID 15934540.
  12. ^ a b Keith, D. W. (September 7, 2010). "Photophoretic levitation of engineered aerosols for geoengineering". Proceedings of the National Academy of Sciences. 107 (38): 16428–16431. Bibcode:2010PNAS..10716428K. doi:10.1073/pnas.1009519107. PMC 2944714. PMID 20823254.
  13. ^ Keith, D.W. and D. K. Weisenstein (2015). "Solar geoengineering using solid aerosol in the stratosphere". Atmos. Chem. Phys. Discuss. 15 (8): 11799–11851. Bibcode:2015ACPD...1511799W. doi:10.5194/acpd-15-11799-2015.
  14. ^ Ferraro, A. J.; Charlton-Perez, A. J.; Highwood, E. J. (January 27, 2015). "Stratospheric dynamics and midlatitude jets under geoengineering with space mirrors and sulfate and titania aerosols" (PDF). Journal of Geophysical Research: Atmospheres. 120 (2): 414–429. Bibcode:2015JGRD..120..414F. doi:10.1002/2014JD022734. hdl:10871/16214.
  15. ^ Crutzen, P. J. (2006). "Albedo Enhancement by Stratospheric Sulfur Injections: A Contribution to Resolve a Policy Dilemma?". Climatic Change. 77 (3–4): 211–220. Bibcode:2006ClCh...77..211C. doi:10.1007/s10584-006-9101-y.
  16. ^ McClellan, Justin; Keith, David; Apt, Jay (August 30, 2012). "Cost Analysis of Stratospheric Albedo Modification Delivery Systems". Environmental Research Letters. 7 (3): 3 in 1–8. doi:10.1088/1748-9326/7/3/034019.
  17. ^ Smith, Wake; Wagner, Gernot (2018). "Stratospheric aerosol injection tactics and costs in the first 15 years of deployment". Environmental Research Letters. 13 (12): 124001. Bibcode:2018ERL....13l4001S. doi:10.1088/1748-9326/aae98d.
  18. ^ Robock, A.; Marquardt, A.; Kravitz, B.; Stenchikov, G. (2009). "Benefits, risks, and costs of stratospheric geoengineering". Geophysical Research Letters. 36 (19): L19703. Bibcode:2009GeoRL..3619703R. doi:10.1029/2009GL039209. hdl:10754/552099.
  19. ^ PICATINNY ARSENAL DOVER N J. "PARAMETRIC STUDIES ON USE OF BOOSTED ARTILLERY PROJECTILES FOR HIGH ALTITUDE RESEARCH PROBES, PROJECT HARP". Archived from the original on January 14, 2017. Retrieved February 25, 2009.
  20. ^ English, J. M.; Toon, O. B.; Mills, M. J. (2012). "Microphysical simulations of sulfur burdens from stratospheric sulfur geoengineering". Atmospheric Chemistry and Physics. 12 (10): 4775–4793. Bibcode:2012ACP....12.4775E. doi:10.5194/acp-12-4775-2012.
  21. ^ MacCracken, M. C.; Shin, H. -J.; Caldeira, K.; Ban-Weiss, G. A. (2012). "Climate response to imposed solar radiation reductions in high latitudes". Earth System Dynamics Discussions. 3 (2): 715–757. Bibcode:2012ESDD....3..715M. doi:10.5194/esdd-3-715-2012.
  22. ^ Niemeier, U.; Schmidt, H.; Timmreck, C. (2011). "The dependency of geoengineered sulfate aerosol on the emission strategy". Atmospheric Science Letters. 12 (2): 189–194. Bibcode:2011AtScL..12..189N. doi:10.1002/asl.304. hdl:11858/00-001M-0000-0011-F582-9.
  23. ^ Brovkin, V.; Petoukhov, V.; Claussen, M.; Bauer, E.; Archer, D.; Jaeger, C. (2008). "Geoengineering climate by stratospheric sulfur injections: Earth system vulnerability to technological failure". Climatic Change. 92 (3–4): 243–259. doi:10.1007/s10584-008-9490-1.
  24. ^ Bates, S. S.; Lamb, B. K.; Guenther, A.; Dignon, J.; Stoiber, R. E. (1992). "Sulfur emissions to the atmosphere from natural sources". Journal of Atmospheric Chemistry. 14 (1–4): 315–337. Bibcode:1992JAtC...14..315B. doi:10.1007/BF00115242. S2CID 55497518.
  25. ^ Zhao, J.; Turco, R. P.; Toon, O. B. (1995). "A model simulation of Pinatubo volcanic aerosols in the stratosphere". Journal of Geophysical Research. 100 (D4): 7315–7328. Bibcode:1995JGR...100.7315Z. doi:10.1029/94JD03325. hdl:2060/19980018652.
  26. ^ Lenton, Tim; Vaughan. "Radiative forcing potential of climate geoengineering" (PDF). Retrieved February 28, 2009.
  27. ^ Monastersky, Richard (1992). "Haze clouds the greenhouse—sulfur pollution slows global warming—includes related article". Science News.
  28. ^ "Breaking Christian News - Religion Headlines".
  29. ^ Rasch, P. J.; Crutzen, P. J.; Coleman, D. B. (2008). "Exploring the geoengineering of climate using stratospheric sulfate aerosols: the role of particle size". Geophysical Research Letters. 35 (2): L02809. Bibcode:2008GeoRL..3502809R. doi:10.1029/2007GL032179.
  30. ^ a b Pierce, Jeffrey R.; Weisenstein, Debra K.; Heckendorn, Patricia; Peter, Thomas; Keith, David W. (September 2010). "Efficient formation of stratospheric aerosol for climate engineering by emission of condensible vapor from aircraft". Geophysical Research Letters. 37 (18): n/a. Bibcode:2010GeoRL..3718805P. doi:10.1029/2010GL043975. S2CID 15934540.
  31. ^ Niemeier, U.; Schmidt, H.; Timmreck, C. (April 2011). "The dependency of geoengineered sulfate aerosol on the emission strategy". Atmospheric Science Letters. 12 (2): 189–194. Bibcode:2011AtScL..12..189N. doi:10.1002/asl.304. hdl:11858/00-001M-0000-0011-F582-9.
  32. ^ Niemeier, U.; Timmreck, C. (2015). "ACP - Peer review - What is the limit of climate engineering by stratospheric injection of SO2?". Atmospheric Chemistry and Physics. 15 (16): 9129–9141. doi:10.5194/acp-15-9129-2015.
  33. ^ a b McClellan, Justin; Keith, David W; Apt, Jay (September 1, 2012). "Cost analysis of stratospheric albedo modification delivery systems". Environmental Research Letters. 7 (3): 034019. doi:10.1088/1748-9326/7/3/034019.
  34. ^ Moriyama, Ryo; Sugiyama, Masahiro; Kurosawa, Atsushi; Masuda, Kooiti; Tsuzuki, Kazuhiro; Ishimoto, Yuki (2017). "The cost of stratospheric climate engineering revisited". Mitigation and Adaptation Strategies for Global Change. 22 (8): 1207–1228. doi:10.1007/s11027-016-9723-y. S2CID 157441259.
  35. ^ Heckendorn, P; Weisenstein, D; Fueglistaler, S; Luo, B P; Rozanov, E; Schraner, M; Thomason, M; Peter, T (2009). "The impact of geoengineering aerosols on stratospheric temperature and ozone". Environ. Res. Lett. 4 (4): 045108. Bibcode:2009ERL.....4d5108H. doi:10.1088/1748-9326/4/4/045108.
  36. ^ Niemeier, U.; Timmreck, U. (2015). "What is the limit of climate engineering by stratospheric injection of SO2". Atmos. Chem. Phys. 15 (16): 9129–9141. Bibcode:2015ACP....15.9129N. doi:10.5194/acp-15-9129-2015.
  37. ^ Robock, A. (2008). "20 reasons why geoengineering may be a bad idea" (PDF). Bulletin of the Atomic Scientists. 64 (2): 14–19. Bibcode:2008BuAtS..64b..14R. doi:10.2968/064002006. S2CID 145468054. Archived from the original (PDF) on February 7, 2020.
  38. ^ Tabazadeh, A.; Drdla, K.; Schoeberl, M. R.; Hamill, P.; Toon, O. B. (February 19, 2002). "Arctic 'ozone hole' in a cold volcanic stratosphere". Proceedings of the National Academy of Sciences. 99 (5): 2609–2612. Bibcode:2002PNAS...99.2609T. doi:10.1073/pnas.052518199. PMC 122395. PMID 11854461.
  39. ^ a b Kenzelmann, Patricia; Weissenstein, D; Peter, T; Luo, B; Fueglistaler, S; Rozanov, E; Thomason, L (February 1, 2009). "Geo-engineering side effects: Heating the tropical tropopause by sedimenting sulphur aerosol?". IOP Conference Series: Earth and Environmental Science. 6 (45): 452017. Bibcode:2009E&ES....6S2017K. doi:10.1088/1755-1307/6/45/452017.
  40. ^ Heckendorn, P; Weisenstein, D; Fueglistaler, S; Luo, B P; Rozanov, E; Schraner, M; Thomason, L W; Peter, T (2009). "The impact of geoengineering aerosols on stratospheric temperature and ozone". Environmental Research Letters. 4 (4): 045108. Bibcode:2009ERL.....4d5108H. doi:10.1088/1748-9326/4/4/045108.
  41. ^ Hargreaves, Ben (2010). "Protecting the Planet". Professional Engineering. 23 (19): 18–22.
  42. ^ LaRC, Denise Adams. "NASA - Geoengineering: Why or Why Not?". www.nasa.gov.
  43. ^ Kravitz, Ben; MacMartin, Douglas G.; Caldeira, Ken (2012). "Geoengineering: Whiter skies?". Geophysical Research Letters. 39 (11): n/a. Bibcode:2012GeoRL..3911801K. doi:10.1029/2012GL051652. ISSN 1944-8007.
  44. ^ Visioni, Daniele; MacMartin, Douglas G.; Kravitz, Ben (2021). "Is Turning Down the Sun a Good Proxy for Stratospheric Sulfate Geoengineering?". Journal of Geophysical Research: Atmospheres. 126 (5): e2020JD033952. Bibcode:2021JGRD..12633952V. doi:10.1029/2020JD033952. ISSN 2169-8996.
  45. ^ "A bright sun today? It's down to the atmosphere". The Guardian. 2017.
  46. ^ Ferraro, A. J., Highwood, E. J., Charlton-Perez, A. J. (2011). "Stratospheric heating by geoengineering aerosols". Geophysical Research Letters. 37 (24): L24706. Bibcode:2011GeoRL..3824706F. doi:10.1029/2011GL049761. hdl:10871/16215.CS1 maint: multiple names: authors list (link)
  47. ^ Visioni, Daniele; Slessarev, Eric; MacMartin, Douglas G; Mahowald, Natalie M; Goodale, Christine L; Xia, Lili (September 1, 2020). "What goes up must come down: impacts of deposition in a sulfate geoengineering scenario". Environmental Research Letters. 15 (9): 094063. Bibcode:2020ERL....15i4063V. doi:10.1088/1748-9326/ab94eb. ISSN 1748-9326.
  48. ^ Visioni, Daniele; Slessarev, Eric; MacMartin, Douglas G; Mahowald, Natalie M; Goodale, Christine L; Xia, Lili (September 1, 2020). "What goes up must come down: impacts of deposition in a sulfate geoengineering scenario". Environmental Research Letters. 15 (9): 094063. doi:10.1088/1748-9326/ab94eb. ISSN 1748-9326.
  49. ^ Izrael, Yuri; et al. (2009). "Field studies of a geo-engineering method of maintaining a modern climate with aerosol particles". Russian Meteorology and Hydrology. 34 (10): 635–638. doi:10.3103/S106837390910001X. S2CID 129327083.
  50. ^ Adler, Nils (October 20, 2020). "10 million snowblowers? Last-ditch ideas to save the Arctic ice". The Guardian. ISSN 0261-3077. Retrieved October 27, 2020.
  51. ^ Dykema, John A.; et al. (2014). "Stratospheric controlled perturbation experiment: a small-scale experiment to improve understanding of the risks of solar geoengineering". Phil. Trans. R. Soc. A. 372 (2013): 20140059. Bibcode:2014RSPTA.37240059D. doi:10.1098/rsta.2014.0059. PMC 4240955. PMID 25404681.
  52. ^ "SCoPEx Science". projects.iq.harvard.edu. Retrieved October 27, 2020.
  53. ^ Convention on Long-Range Transboundary Air Pollution art. 1, Nov. 13, 1979, 1302 U.N.T.S. 219, Article 1
  54. ^ Vienna Convention for the Protection of the Ozone Layer, opened for signature Mar. 22, 1985, 1513 U.N.T.S. 293, Article 1
  55. ^ Hester, Tracy D. (2011). "Remaking the World to Save It: Applying U.S. Environmental Laws to Climate Engineering Projects". Ecology Law Quarterly. 38 (4): 851–901. JSTOR 24115125. SSRN 1755203.

Further reading[edit]

External links[edit]