Surface-enhanced Raman spectroscopy

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Raman spectrum of liquid 2-mercaptoethanol (below) and SERS spectrum of 2-mercaptoethanol monolayer formed on roughened silver (above). Spectra are scaled and shifted for clarity. A difference in selection rules is visible: Some bands appear only in the bulk-phase Raman spectrum or only in the SERS spectrum.

Surface-enhanced Raman spectroscopy or surface-enhanced Raman scattering (SERS) is a surface-sensitive technique that enhances Raman scattering by molecules adsorbed on rough metal surfaces or by nanostructures such as plasmonic-magnetic silica nanotubes.[1] The enhancement factor can be as much as 1010 to 1011,[2][3] which means the technique may detect single molecules.[4][5]


SERS from pyridine adsorbed on electrochemically roughened silver was first observed by Martin Fleischmann, Patrick J. Hendra and A. James McQuillan at the Department of Chemistry at the University of Southampton, UK in 1973.[6] This initial publication has been cited over 4000 times. The 40th Anniversary of the first observation of the SERS effect has been marked by the Royal Society of Chemistry by the award of a National Chemical Landmark plaque to the University of Southampton. In 1977, two groups independently noted that the concentration of scattering species could not account for the enhanced signal and each proposed a mechanism for the observed enhancement. Their theories are still accepted as explaining the SERS effect. Jeanmaire and Richard Van Duyne[7] proposed an electromagnetic effect, while Albrecht and Creighton[8] proposed a charge-transfer effect. Rufus Ritchie, of Oak Ridge National Laboratory's Health Sciences Research Division, predicted the existence of the surface plasmon.[9]


The exact mechanism of the enhancement effect of SERS is still a matter of debate in the literature.[10] There are two primary theories and while their mechanisms differ substantially, distinguishing them experimentally has not been straightforward. The electromagnetic theory proposes the excitation of localized surface plasmons, while the chemical theory proposes the formation of charge-transfer complexes. The chemical theory is based on resonance Raman spectroscopy,[11] in which the frequency coincidence (or resonance) of the incident photon energy and electron transition greatly enhances Raman scattering intensity. Research in 2015 on a more powerful extension of the SERS technique called SLIPSERS (Slippery Liquid-Infused Porous SERS)[12] has further supported the EM theory.[13]

Electromagnetic theory[edit]

The increase in intensity of the Raman signal for adsorbates on particular surfaces occurs because of an enhancement in the electric field provided by the surface. When the incident light in the experiment strikes the surface, localized surface plasmons are excited. The field enhancement is greatest when the plasmon frequency, ωp, is in resonance with the radiation ( for spherical particles). In order for scattering to occur, the plasmon oscillations must be perpendicular to the surface; if they are in-plane with the surface, no scattering will occur. It is because of this requirement that roughened surfaces or arrangements of nanoparticles are typically employed in SERS experiments as these surfaces provide an area on which these localized collective oscillations can occur.[14] SERS enhancement can occur even when an excited molecule is relatively far apart from the surface which hosts metallic nanoparticles enabling surface plasmon phenomena.[15]

The light incident on the surface can excite a variety of phenomena in the surface, yet the complexity of this situation can be minimized by surfaces with features much smaller than the wavelength of the light, as only the dipolar contribution will be recognized by the system. The dipolar term contributes to the plasmon oscillations, which leads to the enhancement. The SERS effect is so pronounced because the field enhancement occurs twice. First, the field enhancement magnifies the intensity of incident light, which will excite the Raman modes of the molecule being studied, therefore increasing the signal of the Raman scattering. The Raman signal is then further magnified by the surface due to the same mechanism that excited the incident light, resulting in a greater increase in the total output. At each stage the electric field is enhanced as E2, for a total enhancement of E4.[16]

The enhancement is not equal for all frequencies. For those frequencies for which the Raman signal is only slightly shifted from the incident light, both the incident laser light and the Raman signal can be near resonance with the plasmon frequency, leading to the E4 enhancement. When the frequency shift is large, the incident light and the Raman signal cannot both be on resonance with ωp, thus the enhancement at both stages cannot be maximal.[17]

The choice of surface metal is also dictated by the plasmon resonance frequency. Visible and near-infrared radiation (NIR) are used to excite Raman modes. Silver and gold are typical metals for SERS experiments because their plasmon resonance frequencies fall within these wavelength ranges, providing maximal enhancement for visible and NIR light. Copper's absorption spectrum also falls within the range acceptable for SERS experiments.[18] Platinum and palladium nanostructures also display plasmon resonance within visible and NIR frequencies.[19]

Chemical theory[edit]

Resonance Raman spectroscopy explains the huge enhancement of Raman scattering intensity. Intermolecular and intramolecular charge transfers significantly enhance Raman spectrum peaks. In particular, the enhancement is huge for species adsorbing the metal surface due to the high-intensity charge transfers from the metal surface with wide band to the adsorbing species.[20] This resonance Raman enhancement is dominant in SERS for species on small nanoclusters with considerable band gaps,[20] because surface plasmon appears only in metal surface with near-zero band gaps. This chemical mechanism probably occurs in concert with the electromagnetic mechanism for metal surface.[21][22]


While SERS can be performed in colloidal solutions, today the most common method for performing SERS measurements is by depositing a liquid sample onto a silicon or glass surface with a nanostructured noble metal surface. While the first experiments were performed on electrochemically roughened silver,[6] now surfaces are often prepared using a distribution of metal nanoparticles on the surface[23] as well as using lithography[24] or porous silicon as a support.[25][26] Two dimensional silicon nanopillars decorated with silver have also been used to create SERS active substrates.[27] The most common metals used for plasmonic surfaces are silver and gold; however, aluminium has recently been explored as an alternative plasmonic material, because its plasmon band is in the UV region, contrary to silver and gold.[28] Hence, there is great interest in using aluminium for UV SERS. It has, however, surprisingly also been shown to have a large enhancement in the infrared, which is not fully understood.[29] In the current decade, it has been recognized that the cost of SERS substrates must be reduced in order to become a commonly used analytical chemistry measurement technique.[30] To meet this need, plasmonic paper has experienced widespread attention in the field, with highly sensitive SERS substrates being formed through approaches such as soaking,[31][32][33] in-situ synthesis,[34][35] screen printing[36] and inkjet printing.[37][38][39]

The shape and size of the metal nanoparticles strongly affect the strength of the enhancement because these factors influence the ratio of absorption and scattering events.[40][41] There is an ideal size for these particles, and an ideal surface thickness for each experiment.[42] Particles that are too large allow the excitation of multipoles, which are nonradiative. As only the dipole transition leads to Raman scattering, the higher-order transitions will cause a decrease in the overall efficiency of the enhancement. Particles that are too small lose their electrical conductance and cannot enhance the field. When the particle size approaches a few atoms, the definition of a plasmon does not hold, as there must be a large collection of electrons to oscillate together.[16] An ideal SERS substrate must possess high uniformity and high field enhancement. Such substrates can be fabricated on a wafer scale and label-free superresolution microscopy has also been demonstrated using the fluctuations of surface enhanced Raman scattering signal on such highly uniform, high-performance plasmonic metasurfaces. [43]


SERS substrates are used to detect the presence of low-abundance biomolecules, and can therefore detect proteins in bodily fluids.[44] Early detection of pancreatic cancer biomarkers was accomplished using SERS-based immunoassay approach.[44] A SERS-base multiplex protein biomarker detection platform in a microfluidic chip is used to detect several protein biomarkers to predict the type of disease and critical biomarkers and increase the chance of diagnosis between diseases with similar biomarkers (PC, OVC, and pancreatitis).[45] This technology has been utilized to detect urea and blood plasma label free in human serum and may become the next generation in cancer detection and screening.[46][47]

The ability to analyze the composition of a mixture on the nano scale makes the use of SERS substrates beneficial for environmental analysis, pharmaceuticals, material sciences, art and archeological research, forensic science, drug and explosives detection, food quality analysis,[48] and single algal cell detection.[49][50][51] SERS combined with plasmonic sensing can be used for high-sensitivity and quantitative analysis of small molecules in human biofluids,[52] quantitative detection of biomolecular interaction,[53] and to study redox processes at the single molecule level.[54]


SERS-based immunoassays can be used for detection of low-abundance biomarkers. For example, antibodies and gold particles can be used to quantify proteins in serum with high sensitivity and specificity.[44][45]

Oligonucleotide targeting[edit]

SERS can be used to target specific DNA and RNA sequences using a combination of gold and silver nanoparticles and Raman-active dyes, such as Cy3. Specific single nucleotide polymorphisms (SNP) can be identified using this technique. The gold nanoparticles facilitate the formation of a silver coating on the dye-labeled regions of DNA or RNA, allowing SERS to be performed. This has several potential applications: For example, Cao et al. report that gene sequences for HIV, Ebola, Hepatitis, and Bacillus Anthracis can be uniquely identified using this technique. Each spectrum was specific, which is advantageous over fluorescence detection; some fluorescent markers overlap and interfere with other gene markers. The advantage of this technique to identify gene sequences is that several Raman dyes are commercially available, which could lead to the development of non-overlapping probes for gene detection.[55]

Selection rules[edit]

The term surface enhanced Raman spectroscopy implies that it provides the same information that traditional Raman spectroscopy does, simply with a greatly enhanced signal. While the spectra of most SERS experiments are similar to the non-surface enhanced spectra, there are often differences in the number of modes present. Additional modes not found in the traditional Raman spectrum can be present in the SERS spectrum, while other modes can disappear. The modes observed in any spectroscopic experiment are dictated by the symmetry of the molecules and are usually summarized by Selection rules. When molecules are adsorbed to a surface, the symmetry of the system can change, slightly modifying the symmetry of the molecule, which can lead to differences in mode selection.[56]

One common way in which selection rules are modified arises from the fact that many molecules that have a center of symmetry lose that feature when adsorbed to a surface. The loss of a center of symmetry eliminates the requirements of the mutual exclusion rule, which dictates that modes can only be either Raman or infrared active. Thus modes that would normally appear only in the infrared spectrum of the free molecule can appear in the SERS spectrum.[14]

A molecule's symmetry can be changed in different ways depending on the orientation in which the molecule is attached to the surface. In some experiments, it is possible to determine the orientation of adsorption to the surface from the SERS spectrum, as different modes will be present depending on how the symmetry is modified.[57]

See also[edit]


  1. ^ Xu, X., Li, H., Hasan, D., Ruoff, R. S., Wang, A. X. and Fan, D. L. (2013), Near-Field Enhanced Plasmonic-Magnetic Bifunctional Nanotubes for Single Cell Bioanalysis. Adv. Funct. Mater.. doi:10.1002/adfm.201203822
  2. ^ Blackie, Evan J.; Le Ru, Eric C.; Etchegoin, Pablo G. (2009). "Single-Molecule Surface-Enhanced Raman Spectroscopy of Nonresonant Molecules". J. Am. Chem. Soc. 131 (40): 14466–14472. doi:10.1021/ja905319w. PMID 19807188.
  3. ^ Blackie, Evan J.; Le Ru, Eric C.; Meyer, Matthias; Etchegoin, Pablo G. (2007). "Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study". J. Phys. Chem. C. 111 (37): 13794–13803. CiteSeerX doi:10.1021/jp0687908.
  4. ^ Nie, S; Emory, SR (1997). "Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering". Science. 275 (5303): 1102–6. doi:10.1126/science.275.5303.1102. PMID 9027306. S2CID 21202666.
  5. ^ Le Ru, Eric C.; Meyer, Matthias; Etchegoin, Pablo G. (2006). "Proof of Single-Molecule Sensitivity in Surface Enhanced Raman Scattering (SERS) by Means of a Two-Analyte Technique". J. Phys. Chem. B. 110 (4): 1944–1948. doi:10.1021/jp054732v. PMID 16471765.
  6. ^ a b Fleischmann, M.; PJ Hendra & AJ McQuillan (15 May 1974). "Raman Spectra of Pyridine Adsorbed at a Silver Electrode". Chemical Physics Letters. 26 (2): 163–166. Bibcode:1974CPL....26..163F. doi:10.1016/0009-2614(74)85388-1.
  7. ^ Jeanmaire, David L.; Richard P. van Duyne (1977). "Surface Raman Electrochemistry Part I. Heterocyclic, Aromatic and Aliphatic Amines Adsorbed on the Anodized Silver Electrode". Journal of Electroanalytical Chemistry. 84: 1–20. doi:10.1016/S0022-0728(77)80224-6.
  8. ^ Albrecht, M. Grant; J. Alan Creighton (1977). "Anomalously Intense Raman Spectra of Pyridine at a Silver Electrode". Journal of the American Chemical Society. 99 (15): 5215–5217. doi:10.1021/ja00457a071.
  9. ^ "Technical Highlights. New Probe Detects Trace Pollutants in Groundwater". Oak Ridge National Laboratory Review. 26 (2). Archived from the original on 2010-01-15.
  10. ^ Barbiellini, Bernardo (February 2017). "Enhancement of Raman scattering from molecules placed near metal nanoparticles". Low Temperature Physics 43, 159. 43 (1): 159. Bibcode:2017LTP....43..159B. doi:10.1063/1.4974193.
  11. ^ Strommen, Dennis P.; Nakamoto, Kazuo (August 1977). "Resonance raman spectroscopy". Journal of Chemical Education. 54 (8): 474. Bibcode:1977JChEd..54..474S. doi:10.1021/ed054p474. ISSN 0021-9584.
  12. ^ Yang, Shikuan; Dai, Xianming; Stogin, Birgitt Boschitsch; Wong, Tak-Sing (2016). "Ultrasensitive surface-enhanced Raman scattering detection in common fluids". Proceedings of the National Academy of Sciences. 113 (2): 268–273. Bibcode:2016PNAS..113..268Y. doi:10.1073/pnas.1518980113. PMC 4720322. PMID 26719413.
  13. ^
  14. ^ a b Smith, E.; Dent, G., Modern Raman Spectroscopy: A Practical Approach. John Wiley and Sons: 2005 ISBN 0-471-49794-0
  15. ^ Kukushkin, V. I.; Van’kov, A. B.; Kukushkin, I. V. (2013). "Long-range manifestation of surface-enhanced Raman scattering". JETP Letters. 98 (2): 64–69. arXiv:1212.2782. Bibcode:2013JETPL..98...64K. doi:10.1134/S0021364013150113. ISSN 0021-3640. S2CID 118383508.
  16. ^ a b Moskovits, M., Surface-Enhanced Raman Spectroscopy: a Brief Perspective. In Surface-Enhanced Raman Scattering – Physics and Applications, 2006; pp. 1–18 ISBN 3-540-33566-8
  17. ^ Campion, Alan; Kambhampati, Patanjali (1998). "Surface-enhanced Raman scattering". Chemical Society Reviews. 27 (4): 241. doi:10.1039/A827241Z.
  18. ^ Creighton, J. Alan; Eadon, Desmond G. (1991). "Ultraviolet–visible absorption spectra of the colloidal metallic elements". Journal of the Chemical Society, Faraday Transactions. 87 (24): 3881. doi:10.1039/FT9918703881.
  19. ^ Langhammer, Christoph; Yuan, Zhe; Zorić, Igor; Kasemo, Bengt (2006). "Plasmonic Properties of Supported Pt and Pd Nanostructures". Nano Letters. 6 (4): 833–838. Bibcode:2006NanoL...6..833L. doi:10.1021/nl060219x. PMID 16608293.
  20. ^ a b Tsuneda, Takao; Iwasa, Takeshi; Taketsugu, Tetsuya (2019-09-07). "Roles of silver nanoclusters in surface-enhanced Raman spectroscopy". The Journal of Chemical Physics. 151 (9): 094102. Bibcode:2019JChPh.151i4102T. doi:10.1063/1.5111944. hdl:2115/76053. ISSN 0021-9606. PMID 31492069.
  21. ^ Lombardi, John R.; Birke, Ronald L.; Lu, Tianhong; Xu, Jia (1986). "Charge-transfer theory of surface enhanced Raman spectroscopy: Herzberg–Teller contributions". The Journal of Chemical Physics. 84 (8): 4174. Bibcode:1986JChPh..84.4174L. doi:10.1063/1.450037.
  22. ^ Lombardi, J.R.; Birke, R.L. (2008). "A Unified Approach to Surface-Enhanced Raman Spectroscopy". Journal of Physical Chemistry C. 112 (14): 5605–5617. doi:10.1021/jp800167v.
  23. ^ Mock, J. J.; Barbic, M.; Smith, D. R.; Schultz, D. A.; Schultz, S. (2002). "Shape effects in plasmon resonance of individual colloidal silver nanoparticles". The Journal of Chemical Physics. 116 (15): 6755. Bibcode:2002JChPh.116.6755M. doi:10.1063/1.1462610.
  24. ^ Witlicki, Edward H.; et al. (2011). "Molecular Logic Gates Using Surface-Enhanced Raman-Scattered Light". J. Am. Chem. Soc. 133 (19): 7288–7291. doi:10.1021/ja200992x. PMID 21510609.
  25. ^ Lin, Haohao; Mock, Jack; Smith, David; Gao, Ting; Sailor, Michael J. (August 2004). "Surface-Enhanced Raman Scattering from Silver-Plated Porous Silicon". The Journal of Physical Chemistry B. 108 (31): 11654–11659. doi:10.1021/jp049008b.
  26. ^ Talian, Ivan; Mogensen, Klaus Bo; Oriňák, Andrej; Kaniansky, Dušan; Hübner, Jörg (August 2009). "Surface-enhanced Raman spectroscopy on novel black silicon-based nanostructured surfaces". Journal of Raman Spectroscopy. 40 (8): 982–986. Bibcode:2009JRSp...40..982T. doi:10.1002/jrs.2213.
  27. ^ Kanipe, Katherine N.; Chidester, Philip P. F.; Stucky, Galen D.; Moskovits, Martin (2016). "Large Format Surface-Enhanced Raman Spectroscopy Substrate Optimized for Enhancement and Uniformity". ACS Nano. 10 (8): 7566–7571. doi:10.1021/acsnano.6b02564. PMID 27482725.
  28. ^ Dörfer, Thomas; Schmitt, Michael; Popp, Jürgen (November 2007). "Deep-UV surface-enhanced Raman scattering". Journal of Raman Spectroscopy. 38 (11): 1379–1382. Bibcode:2007JRSp...38.1379D. doi:10.1002/jrs.1831.
  29. ^ Mogensen, Klaus Bo; Gühlke, Marina; Kneipp, Janina; Kadkhodazadeh, Shima; Wagner, Jakob B.; Espina Palanco, Marta; Kneipp, Harald; Kneipp, Katrin (2014). "Surface-enhanced Raman scattering on aluminum using near infrared and visible excitation". Chemical Communications. 50 (28): 3744–6. doi:10.1039/c4cc00010b. PMID 24577020.
  30. ^ Hoppmann, Eric P.; Yu, Wei W.; White, Ian M. (2014). "Inkjet-Printed Fluidic Paper Devices for Chemical and Biological Analytics Using Surface Enhanced Raman spectroscopy" (PDF). IEEE Journal of Selected Topics in Quantum Electronics. 20 (3): 195–204. Bibcode:2014IJSTQ..20..195.. doi:10.1109/jstqe.2013.2286076. S2CID 13675778.
  31. ^ Lee, Chang H.; Tian, Limei; Singamaneni, Srikanth (2010). "Paper-Based SERS". ACS Applied Materials & Interfaces. 2 (12): 3429–3435. doi:10.1021/am1009875. PMID 21128660.
  32. ^ Ngo, Ying Hui; Li, Dan; Simon, George P.; Garnier, Gil (2012). "Gold Nanoparticle". Langmuir. 28 (23): 8782–8790. doi:10.1021/la3012734. PMID 22594710.
  33. ^ Ngo, Ying Hui; Li, Dan; Simon, George P.; Garnier, Gil (2013). "Effect of cationic polyacrylamides on the aggregation and SERS". Journal of Colloid and Interface Science. 392: 237–246. Bibcode:2013JCIS..392..237N. doi:10.1016/j.jcis.2012.09.080. PMID 23131808.
  34. ^ Laserna, J. J.; Campiglia, A. D.; Winefordner, J. D. (1989). "Mixture analysis and quantitative determination of nitrogen-containing organic molecules by surface-enhanced Raman spectrometry". Anal. Chem. 61 (15): 1697–1701. doi:10.1021/ac00190a022. PMID 2774198.
  35. ^ Chang, Yung; Yandi, Wetra; Chen, Wen-Yih; Shih, Yu-Ju; Yang, Chang-Chung; Chang, Yu; Ling, Qing-Dong; Higuchi, Akon (2010). "Tunable Bioadhesive Copolymer Hydrogels of Thermoresponsive Poly( N -isopropyl acrylamide) Containing Zwitterionic Polysulfobetaine". Biomacromolecules. 11 (4): 1101–1110. doi:10.1021/bm100093g. PMID 20201492.
  36. ^ Qu, Lu-Lu; Li, Da-Wei; Xue, Jin-Qun; Zhai, Wen-Lei; Fossey, John S.; Long, Yi-Tao (2012-02-07). "Batch fabrication of disposable screen printed SERS arrays". Lab Chip. 12 (5): 876–881. doi:10.1039/C2LC20926H. ISSN 1473-0189. PMID 22173817. S2CID 40014129.
  37. ^ Yu, Wei W.; White, Ian M. (2013). "Inkjet-printed paper-based SERS". Analyst. 138 (4): 1020–5. Bibcode:2013Ana...138.1020Y. doi:10.1039/c2an36116g. PMID 23001259. S2CID 45650350.
  38. ^ Hoppmann, Eric P.; Yu, Wei W.; White, Ian M. (2013). "Highly sensitive and flexible inkjet printed SERS". Methods. 63 (3): 219–224. doi:10.1016/j.ymeth.2013.07.010. PMID 23872057.
  39. ^ Fierro-Mercado, Pedro M.; Hern, Samuel P. (2012). "Highly Sensitive Filter Paper Substrate for SERS". International Journal of Spectroscopy. 2012: 1–7. doi:10.1155/2012/716527.
  40. ^ H. Lu; Zhang, Haixi; Yu, Xia; Zeng, Shuwen; Yong, Ken-Tye; Ho, Ho-Pui (2011). "Seed-mediated Plasmon-driven Regrowth of Silver Nanodecahedrons (NDs)" (PDF). Plasmonics. 7 (1): 167–173. doi:10.1007/s11468-011-9290-8. S2CID 40843613.
  41. ^ Aroca, R., Surface-enhanced Vibrational Spectroscopy. John Wiley & Sons (2006) ISBN 0-471-60731-2
  42. ^ Bao, Li-Li; Mahurin, Shannon M.; Liang, Cheng-Du; Dai, Sheng (2003). "Study of silver films over silica beads as a surface-enhanced Raman scattering (SERS) substrate for detection of benzoic acid". Journal of Raman Spectroscopy. 34 (5): 394–398. Bibcode:2003JRSp...34..394B. doi:10.1002/jrs.993.
  43. ^ Ayas, S. (2013). "Label-Free Nanometer-Resolution Imaging of Biological Architectures through Surface Enhanced Raman Scattering". Scientific Reports. 3: 2624. Bibcode:2013NatSR...3E2624A. doi:10.1038/srep02624. PMC 3769681. PMID 24022059.
  44. ^ a b c Banaei, N; et al. (September 2017). "Multiplex detection of pancreatic cancer biomarkers using a SERS-based immunoassay". Nanotechnology. 28 (45): 455101. Bibcode:2017Nanot..28S5101B. doi:10.1088/1361-6528/aa8e8c. PMID 28937361.
  45. ^ a b Banaei, N; et al. (January 2019). "Machine learning algorithms enhance the specificity of cancer biomarker detection using SERS-based immunoassays in microfluidic chips". RSC Advances. 9 (4): 1859–1868. doi:10.1039/c8ra08930b.
  46. ^ Han, YA; Ju J; Yoon Y; Kim SM (May 2014). "Fabrication of cost-effective surface enhanced Raman spectroscopy substrate using glancing angle deposition for the detection of urea in body fluid". Journal of Nanoscience and Nanotechnology. 14 (5): 3797–9. doi:10.1166/jnn.2014.8184. PMID 24734638.
  47. ^ Li, D; Feng S; Huang H; Chen W; Shi H; Liu N; Chen L; Chen W; Yu Y; Chen R (March 2014). "Label-free detection of blood plasma using silver nanoparticle based surface-enhanced Raman spectroscopy for esophageal cancer screening". Journal of Nanoscience and Nanotechnology. 10 (3): 478–84. doi:10.1166/jbn.2014.1750. PMID 24730243.
  48. ^ Andreou, C.; Mirsafavi, R.; Moskovits, M.; Meinhart, C. D. (2015). "Detection of low concentrations of ampicillin in milk". The Analyst. 140 (15): 5003–5005. doi:10.1039/c5an00864f. PMID 26087055.
  49. ^ Deng, Y; Juang Y (March 2014). "Black silicon SERS substrate: Effect of surface morphology on SERS detection and application of single algal cell analysis". Biosensors and Bioelectronics. 53: 37–42. doi:10.1016/j.bios.2013.09.032. PMID 24121206.
  50. ^ Hoppmann, Eric; et al. (2013). Trace detection overcoming the cost and usability limitations of traditional SERS technology (PDF) (Technical report). Diagnostic anSERS.
  51. ^ Wackerbarth H; Salb C; Gundrum L; Niederkrüger M; Christou K; Beushausen V; Viöl W (2010). "Detection of explosives based on surface-enhanced Raman spectroscopy". Applied Optics. 49 (23): 4362–4366. Bibcode:2010ApOpt..49.4362W. doi:10.1364/AO.49.004362. PMID 20697437.
  52. ^ Goodacre R, Graham D, Faulds K (2018). "Recent developments in quantitative SERS moving: towards absolute quantification". Trends in Analytical Chemistry. 102: 359–368. doi:10.1016/j.trac.2018.03.005.
  53. ^ Xu, Zhida; Jiang, Jing; Wang, Xinhao; Han, Kevin; Ameen, Abid; Khan, Ibrahim; Chang, Te-Wei; Liu, Logan (2016). "Large-area, uniform and low-cost dual-mode plasmonic naked-eye colorimetry and SERS sensor with handheld Raman spectrometer". Nanoscale. 8 (11): 6162–6172. arXiv:1603.01906. Bibcode:2016Nanos...8.6162X. doi:10.1039/C5NR08357E. PMID 26931437. S2CID 25522125.
  54. ^ Cortés, Emiliano; Etchegoin, Pablo G.; Le Ru, Eric C.; Fainstein, Alejandro; Vela, María E.; Salvarezza, Roberto C. (2010-12-29). "Monitoring the Electrochemistry of Single Molecules by Surface-Enhanced Raman Spectroscopy". Journal of the American Chemical Society. 132 (51): 18034–18037. doi:10.1021/ja108989b. ISSN 0002-7863. PMID 21138263.
  55. ^ Cao, Y. C.; Jin, R; Mirkin, CA (2002). "Nanoparticles with Raman Spectroscopic Fingerprints for DNA and RNA Detection". Science. 297 (5586): 1536–1540. Bibcode:2002Sci...297.1536C. doi:10.1126/science.297.5586.1536. PMID 12202825. S2CID 25511683.
  56. ^ Moskovits, M.; Suh, J. S. (1984). "Surface selection rules for surface-enhanced Raman spectroscopy: calculations and application to the surface-enhanced Raman spectrum of phthalazine on silver". The Journal of Physical Chemistry. 88 (23): 5526–5530. doi:10.1021/j150667a013.
  57. ^ Brolo, A.G.; Jiang, Z.; Irish, D.E. (2003). "The orientation of 2,2′-bipyridine adsorbed at a SERS-active Au(111) electrode surface" (PDF). Journal of Electroanalytical Chemistry. 547 (2): 163–172. doi:10.1016/S0022-0728(03)00215-8.