Surgical planning

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Surgical planning using bone segment navigation for the osteotomy of the jaw bones, based on models fixed into an articulator (registration based on infrared devices)
Surgical planning using bone segment navigation for the osteotomy of the left orbit, based on stereolithograpic models (registration based on infrared devices)

The surgical planning is the preoperative method of pre-visualising a surgical intervention, in order to predefine the surgical steps and furthermore the bone segment navigation in the context of computer-assisted surgery. The surgical planning is most important in neurosurgery and oral and maxillofacial surgery. The transfer of the surgical planning to the patient is generally made using a medical navigation system.

Principles of surgical planning[edit]

The imagistic dataset used for surgical planning is mainly based on a CT or MRI. In oral and maxillofacial surgery, a different, more "traditional" surgical planning can be used for orthognatic surgery, based on cast models fixed into an articulator.

History of the concept[edit]

In order to make a surgical planning, one would need a 3D image of the patient. The starting point was made by G. Hounsfield in the 1970s, by using CT in order to record data about the anatomical situation of the patients.[1] In the 1980s, advances were made by the radiologist M. Vannier and his team, by creating the first computed three-dimensional reconstruction from a CT dataset.[2] In the early 1990s, the surgical planning was performed by using stereolithographic models.[3] During the late 1990s, the first full computer-based virtual surgical planning was made for osteotomies, and then transferred to the operating theatre by a navigation system.[4]

The first commercially available neurosurgical planning systems appeared in the 1990s (the StealthStation by Medtronic,[5] the VectorVision by Brainlab[6]). As newer imaging modalities emerged providing increasing anatomical and functional detail for the patient in the 2000s, these surgical planning systems started to incorporate Virtual Reality technology to facilitate the visualisation and manipulation of the 3D data. One example of such systems is the Dextroscope, manufactured by Volume Interactions Pte Ltd. The Dextroscope is mostly used in the planning of complex neurosurgical procedures.[7][8][9][10]

References[edit]

  1. ^ Wells PNT: Sir Godfrey Newbold Hounsfield, Biogr. Mems Fell. R. Soc. 51, 221-235, 2005
  2. ^ Vannier MW, Marsh JL, Warren JO: Three Dimensional CT Reconstruction Images for Craniofacial Surgical Planning and Evaluation, Radiology, 150(1):179-84, 1984
  3. ^ Klimek L, Klein HM, Schneider W, Mosges R, Schmelzer B, Voy ED: Stereolithographic modelling for reconstructive head surgery, Acta Oto-Rhino-Laryngologica Belgica, 47(3):329-34, 1993
  4. ^ Marmulla R, Niederdellmann H: Surgical Planning of Computer Assisted Repositioning Osteotomies, Plast Reconstr Surg 104 (4): 938-944, 1999
  5. ^ Smith, K R, K J Frank, and R D Bucholz. “The NeuroStation--a Highly Accurate, Minimally Invasive Solution to Frameless Stereotactic Neurosurgery.” Computerized Medical Imaging and Graphics: The Official Journal of the Computerized Medical Imaging Society 18, no. 4 (August 1994): 247–56.
  6. ^ Vilsmeier, Stefan, and Fotios Nisiropoulos. “Introduction of the Passive Marker Neuronavigation System VectorVision.” In Computer-Assisted Neurosurgery, edited by Norihiko Tamaki M.D and Kazumasa Ehara M.D, 23–37. Springer Japan, 1997. http://link.springer.com/chapter/10.1007/978-4-431-65889-4_3.
  7. ^ Ferroli, Paolo, Giovanni Tringali, Francesco Acerbi, Domenico Aquino, Angelo Franzini, and Giovanni Broggi. “Brain Surgery in a Stereoscopic Virtual Reality Environment: A Single Institution’s Experience with 100 Cases.” Neurosurgery 67, no. 3 Suppl Operative (September 2010): ons79–84; discussion ons84. doi:10.1227/01.NEU.0000383133.01993.96.
  8. ^ Kockro, R. A., L. Serra, Y. Tseng-Tsai, C. Chan, S. Yih-Yian, C. Gim-Guan, E. Lee, L. Y. Hoe, N. Hern, and W. L. Nowinski. “Planning and Simulation of Neurosurgery in a Virtual Reality Environment.” Neurosurgery 46, no. 1 (January 2000): 118–135; discussion 135–137.
  9. ^ Matis, Georgios K, Danilo O de A Silva, Olga I Chrysou, Michail Karanikas, Sygkliti-Henrietta Pelidou, Theodossios A Birbilis, Antonio Bernardo, and Philip Stieg. “Virtual Reality Implementation in Neurosurgical Practice: The ‘Can’t Take My Eyes off You’ Effect.” Turkish Neurosurgery 23, no. 5 (2013): 690–91.
  10. ^ Robison, R. A., C. Y. Liu, and M. L. J. Apuzzo. “Man, Mind, and Machine: The Past and Future of Virtual Reality Simulation in Neurologic Surgery.” World Neurosurgery 76, no. 5 (2011): 419–30.