Surgical staple

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
34 surgical staples closing scalp following craniotomy
Projectional radiograph of surgical staples

Surgical staples are specialized staples used in surgery in place of sutures to close skin wounds, connect or remove parts of the bowels or lungs. The use of staples over sutures reduces the local inflammatory response, width of the wound, and the time it takes to close.[1]

A more recent development, from the 1990s, uses clips instead of staples for some applications; this does not require the staple to penetrate.[2]

History[edit]

The technique was pioneered by "father of surgical stapling", Hungarian surgeon Humor Hultl.[3][4] Hultl's prototype stapler of 1908 weighed 8 pounds (3.6 kg), and required two hours to assemble and load.

The technology was refined in the 1950s in the Soviet Union, allowing for the first commercially produced re-usable stapling devices for creation of bowel and vascular anastomoses.[5] Mark M. Ravitch, brought a sample of stapling device after attending a surgical conference in USSR, and introduced it to entrepreneur Leon C. Hirsch, who founded the United States Surgical Corporation in 1964 to manufacture surgical staplers under its Auto Suture brand.[6] Until the late 1970s USSC had the market essentially to itself, but in 1977 Johnson & Johnson's Ethicon brand entered the market and today both are widely used, along with competitors from the Far East. USSC was bought by Tyco Healthcare in 1998, which became Covidien on June 29, 2007.

Safety and patency of mechanical (stapled) bowel anastomoses has been widely studied. It is generally the case in such studies that sutured anastomoses are either comparable or less prone to leakage.[7] It is possible that this is the result of recent advances in suture technology, along with increasingly risk-conscious surgical practice. Certainly modern synthetic sutures are more predictable and less prone to infection than catgut, silk and linen, which were the main suture materials used up to the 1990s.

One key feature of intestinal staplers is that the edges of the stapler act as a haemostat, compressing the edges of the wound and closing blood vessels during the stapling process. Recent studies have shown that with current suturing techniques there is no significant difference in outcome between hand sutured and mechanical anastomoses (including clips), but mechanical anastomoses are significantly quicker to perform.[8][2]

In patients that are subjected to pulmonary resections where lung tissue is sealed with staplers, there is often postoperative air leaks.[9] Alternative techniques to seal lung tissue are currently investigated.[10]

Types and applications[edit]

Laparoscopic cholecystectomy.
Close-up demonstration of a surgical skin stapler.

The first commercial staplers were made of stainless steel with titanium staples loaded into reloadable staple cartridges.

Modern surgical staplers are either disposable and made of plastic, or reusable and made of stainless steel. Both types are generally loaded using disposable cartridges.

The staple line may be straight, curved or circular. Circular staplers are used for end-to-end anastomosis after bowel resection or, somewhat more controversially, in esophagogastric surgery.[11] The instruments may be used in either open or laparoscopic surgery, different instruments are used for each application. Laparoscopic staplers are longer, thinner, and may be articulated to allow for access from a restricted number of trocar ports.

Some staplers incorporate a knife, to complete excision and anastomosis in a single operation. Staplers are used to close both internal and skin wounds. Skin staples are usually applied using a disposable stapler, and removed with a specialized staple remover. Staplers are also used in vertical banded gastroplasty surgery (popularly known as "stomach stapling").

Vascular stapler for reducing warm ischemia in organ transplantation. With this model each stapler end can be mounted on donor and recipient by independent surgical teams without care for reciprocal orientation, being the maximal possible vascular axis torsion ≤30°. Activating guide-wire is connected just immediately before firing (video)

While devices for circular end-to-end anastomosis of digestive tract are widely used, in spite of intensive research [12][13][14] circular staplers for vascular anastomosis never had yet significant impact on standard hand (Carrel) suture technique. Apart from the different modality of coupling of vascular (everted) in respect to digestive (inverted) stumps, the main basic reason could be that, particularly for small vessels, the manuality and precision required just for positioning on vascular stumps and actioning any device cannot be significantly inferior to that required to carry out the standard hand suture, then making of little utility the use of any device. An exception to that however could be organ transplantation where these two phases, i.e.device positioning at the vascular stumps and device actioning, can be carried out in different time, by different surgical team, in safe conditions when the time required does not influence donor organ preservation, i.e. at the back table in cold ischemia condition for the donor organ and after native organ removal in the recipient. This is finalized to make as brief as possible the donor organ dangerous warm ischemia phase that can be contained in the couple of minutes or less necessary just to connect the device's ends and actioning the stapler.

Although most surgical staples are made of titanium, stainless steel is more often used in some skin staples and clips. Titanium produces less reaction with the immune system and, being non-ferrous, does not interfere significantly with MRI scanners, although some imaging artifacts may result. Synthetic absorbable (bioabsorbable) staples are also now becoming available, based on polyglycolic acid, as with many synthetic absorbable sutures.

Titanium staples are not suspected of causing nickel reactions because nickel is rarely if ever used in titanium alloys.[dubious ]

Removal of skin staples[edit]

Where skin staples are used to seal a skin wound it will be necessary to remove the staples after an appropriate healing period, usually between 5 and 10 days, depending on the location of the wound and other factors. The skin staple remover is a small manual device which consists of a shoe or plate that is sufficiently narrow and thin to insert under the skin staple. The active part is a small blade that when hand-pressure is exerted it pushes down on the staple and pushes it through a slot in the shoe and deforms the staple into an 'M' shape to facilitate its removal, although in an emergency it is possible to remove them with a pair of artery forceps.[15] Skin staple removers are manufactured in many shapes and forms,[16] some disposable and some reusable.

See also[edit]

References[edit]

  1. ^ Iavazzo, Christos; Gkegkes, Ioannis D.; Vouloumanou, Evridiki K.; Mamais, Ioannis; Peppas, George; Falagas, Matthew E. (September 2011). "Sutures versus staples for the management of surgical wounds: a meta-analysis of randomized controlled trials". The American Surgeon. 77 (9): 1206–1221. ISSN 1555-9823. PMID 21944632.
  2. ^ a b Chughtai, T.; Chen, L. Q.; Salasidis, G.; Nguyen, D.; Tchervenkov, C.; Morin, J. F. (November 2000). "Clips versus suture technique: is there a difference?". The Canadian Journal of Cardiology. 16 (11): 1403–1407. ISSN 0828-282X. PMID 11109037.
  3. ^ Non-suture methods of vascular anastomosis, British Journal of Surgery, 19 Feb 2003: Volume 90, Issue 3, Pages 261 - 271
  4. ^ Circular vascular stapling in coronary surgery, Konstantinov, Annals of Thoracic Surgery, 2004; 78: 369-373
  5. ^ [1]
  6. ^ History of United States Surgical Corporation
  7. ^ Brundage Susan I (2001). "Stapled versus Sutured Gastrointestinal Anastomoses in the Trauma Patient: A Multicenter Trial". Journal of Trauma-Injury Infection & Critical Care. 51 (6): 1054–1061. doi:10.1097/00005373-200112000-00005.
  8. ^ Surgery Today, Volume 34, Number 2 / February, 2004
  9. ^ Venuta, F; Rendina, EA; De Giacomo, T; Flaishman, I; Guarino, E; Ciccone, AM; Ricci, C (April 1998). "Technique to reduce air leaks after pulmonary lobectomy". European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery. 13 (4): 361–4. PMID 9641332.
  10. ^ Guedes, Rogério Luizari; Höglund, Odd Viking; Brum, Juliana Sperotto; Borg, Niklas; Dornbusch, Peterson Triches (3 January 2018). "Resorbable Self-Locking Implant for Lung Lobectomy Through Video-Assisted Thoracoscopic Surgery: First Live Animal Application". Surgical Innovation. 25 (2): 158–164. doi:10.1177/1553350617751293.
  11. ^ European Journal of Cardio-Thoracic Surgery, Volume 25, Issue 6, June 2004, Pages 1097-1101
  12. ^ Nazari S et al. A new vascular stapler for pulmonary artery anastomosis in experimental single lung trasnplantation.Video, Proceedings of the 4th Annual Meeting of The Association for Cardio-Thoracic Surgery, Naples, Sept 16-19, 1990
  13. ^ "Evaluation of an aortic stapler for an open aortic anastomosis". The Journal of Cardiovascular Surgery (Torino). 48 (5): 659–65. Oct 2007 – via Minerva Medica.
  14. ^ "Intravascular Stapler for "Open" Aortic Surgery: Preliminary Results". European Journal of Vascular and Endovascular Surgery. 33 (4): 408–11. Apr 2007. doi:10.1016/j.ejvs.2006.10.019 – via Science Direct.
  15. ^ Teoh, MK; Bird, DA (1 September 1987), "Removal of skin staples in an emergency", Ann R Coll Surg Engl, Annals of the Royal College of Surgeons of England, 69: 222–4, PMC 2498551, PMID 3314634
  16. ^ https://www.google.co.uk/search?q=skin+staple+removers&biw=1173&bih=813&source=lnms&tbm=isch&sa=X&ved=0CAcQ_AUoAmoVChMI8_nK9aTsxgIViXI-Ch21EAPc#imgrc=EgdRfi49foQSwM%3A