Suslin cardinal

From Wikipedia, the free encyclopedia
Jump to: navigation, search

In mathematics, a cardinal λ < Θ is a Suslin cardinal if there exists a set P ⊂ 2ω such that P is λ-Suslin but P is not λ'-Suslin for any λ' < λ. It is named after the Russian mathematician Mikhail Yakovlevich Suslin (1894–1919).

See also[edit]

References[edit]

  • Howard Becker, The restriction of a Borel equivalence relation to a sparse set, Arch. Math. Logic 42, 335–347 (2003), doi:10.1007/s001530200142