Swift–Hohenberg equation

From Wikipedia, the free encyclopedia
Jump to: navigation, search

The Swift–Hohenberg equation (named after Jack B. Swift and Pierre Hohenberg) is a partial differential equation noted for its pattern-forming behaviour. It takes the form

where u = u(x, t) or u = u(x, y, t) is a scalar function defined on the line or the plane, r is a real bifurcation parameter, and N(u) is some smooth nonlinearity.

The equation is named after the authors of the paper,[1] where it was derived from the equations for thermal convection.

The webpage of Michael Cross[2] contains some numerical integrators which demonstrate the behaviour of several Swift–Hohenberg-like systems.

Applications[edit]

Geometric Measure Theory[edit]

The equation has been used for finding candidate solutions to the Kelvin Problem on minimal surfaces.

References[edit]

  1. ^ J. Swift,P.C. Hohenberg (1977). "Hydrodynamic fluctuations at the convective instability". Phys. Rev. A. 15: 319–328. doi:10.1103/PhysRevA.15.319. 
  2. ^ Java applet demonstrations