Synovial membrane

From Wikipedia, the free encyclopedia
  (Redirected from Synovium)
Jump to: navigation, search
Synovial membrane
Joint.png
Typical Joint
Illu synovial joint.jpg
Synovial joint
Details
Latin membrana synovialis capsulae articularis
Identifiers
Gray's p.282
Dorlands
/Elsevier
m_08/12522248
TA A03.0.00.028
FMA 66762
Anatomical terminology

The synovial membrane (also known as synovium or stratum synoviale)[1] is the soft tissue found between the joint capsule and the joint cavity of synovial joints.[2]

The word "synovium" is related to the word "synovia" (synovial fluid), which is the clear, viscous, lubricating fluid secreted by synovial membranes. The word "synvovia" or "sinovia" was coined by Paracelsus,[3] and may have been derived from the Greek word "syn" ("with") and the Latin word "ovum" ("egg") because the synovial fluid in joints that have a cavity between the bearing surfaces is similar to egg white.

Structure[edit]

The synovial membrane is variable but often has two layers

  • The inner layer, or intima, consists of a sheet of cells thinner than a piece of paper.

Where the underlying subintima is loose, the intima sits on a pliable membrane, giving rise to the term synovial membrane.

This membrane, together with the cells of the intima, provides something like an inner tube, sealing the synovial fluid from the surrounding tissue (effectively stopping the joints from being squeezed dry when subject to impact, such as running).

The surface of synovium may be flat or may be covered with finger-like projections or villi, which, it is presumed, help to allow the soft tissue to change shape as the joint surfaces move one on another.

Just beneath the intima, most synovium has a dense net of small blood vessels that provide nutrients not only for synovium but also for the avascular cartilage.

In any one position, much of the cartilage is close enough to get nutrition direct from synovium.

Some areas of cartilage have to obtain nutrients indirectly and may do so either from diffusion through cartilage or possibly by 'stirring' of synovial fluid.

The intimal cells are of two types, fibroblasts and macrophages, both of which are different in certain respects from similar cells in other tissues.

  • The fibroblasts manufacture a long-chain sugar polymer called hyaluronan; which makes the synovial fluid "ropy"-like egg-white, together with a molecule called lubricin, which lubricates the joint surfaces. The water of synovial fluid is not secreted as such but is effectively trapped in the joint space by the hyaluronan.
  • The macrophages are responsible for the removal of undesirable substances from the synovial fluid.

Synovial cell[edit]

Synovial cell Resemble Prominent organelle Function
Type A Macrophage Mitochondria Phagocytosis
Type B Fibroblast Endoplasmic reticulum Secrete hyaluronic acid, & proteins complex (mucin) of synovial fluid

Mechanics[edit]

Although a biological joint can resemble a man-made joint in being a hinge or a ball and socket, the engineering problems that nature must solve are very different because the joint works within an almost completely solid structure, with no wheels or nuts and bolts.

In general, the bearing surfaces of manmade joints interlock, as in a hinge. This is rare for biological joints (although the badger's jaw interlocks).

More often the surfaces are held together by cord-like ligaments. Virtually all the space between muscles, ligaments, bones, and cartilage is filled with pliable solid tissue. The fluid-filled gap is at most only a twentieth of a millimetre thick. This means that synovium has certain rather unexpected jobs to do. These may include:

  1. Providing a plane of separation, or disconnection, between solid tissues so that movement can occur with minimum bending of solid components. If this separation is lost, as in a 'frozen shoulder', the joint cannot move.
  2. Providing a packing that can change shape in whatever way is needed to allow the bearing surfaces to move on each other.
  3. Controlling the volume of fluid in the cavity so that it is just enough to allow the solid components to move over each other freely. This volume is normally so small that the joint is under slight suction.

Pathology[edit]

Synovium can become irritated and thickened (synovitis) in conditions such as osteoarthritis,[4] Ross River virus[5] or rheumatoid arthritis.[6]

In general, inflamed synovium is accompanied by extra macrophage recruitment (as well as the existing type A cells), fibroblast proliferation and an influx of inflammatory cells including lymphocytes, monocytes and plasma cells.[7] When this happens, the synovium can interfere with the normal functioning of the joint. Excessive thickened synovium, filled with cells and fibrotic collagenous tissue, can physically restrict joint movement. The synovial fibroblasts may make smaller hyaluronan so it is a less effective lubricant of the cartilge surfaces. Under stimulation from invading inflammatory cells, the synovial cells may also produce enzymes (proteinases) that can digest the cartilage extracellular matrix. Fragments of extracellular matrix can then further irritate the synovium.

See also[edit]

References[edit]

  1. ^ Morris, Christopher G., ed. (1992). "synovial membrane". Academic Press Dictionary of Science and Technology. Gulf Professional Publishing. p. 2157. ISBN 978-0-12-200400-1. 
  2. ^ "Medcyclopaedia - Synovial membrane". Archived from the original on 2012-02-05. Retrieved 2008-01-29. 
  3. ^ The American Heritage Dictionary of the English Language[full citation needed]
  4. ^ Man GS, Mologhianu G (2014). "Osteoarthritis pathogenesis - a complex process that involves the entire joint". J. Med. Life 7 (1): 37–41. PMID 24653755. 
  5. ^ Suhrbier A, La Linn M (2004). "Clinical and pathologic aspects of arthritis due to Ross River virus and other alphaviruses". Curr. Opin. Rheumatol. 16 (4): 374–9. PMID 15201600. 
  6. ^ Townsend MJ (2014). "Molecular and cellular heterogeneity in the Rheumatoid Arthritis synovium: clinical correlates of synovitis". Best Pract. Res. Clin. Rheumatol. 28 (4): 539–49. doi:10.1016/j.berh.2014.10.024. PMID 25481548. 
  7. ^ Wechalekar MD, Smith MD (2014). "Utility of arthroscopic guided synovial biopsy in understanding synovial tissue pathology in health and disease states". World J. Orthop. 5 (5): 566–73. doi:10.5312/wjo.v5.i5.566. PMID 25405084.