BAFF receptor

From Wikipedia, the free encyclopedia
  (Redirected from TNFRSF13C)
Jump to navigation Jump to search
TNFRSF13C
Protein TNFRSF13C PDB 1oqe.png
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesTNFRSF13C, BAFF-R, BAFFR, BROMIX, CD268, CVID4, prolixin, tumor necrosis factor receptor superfamily member 13C, TNF receptor superfamily member 13C
External IDsOMIM: 606269 MGI: 1919299 HomoloGene: 49897 GeneCards: TNFRSF13C
Gene location (Human)
Chromosome 22 (human)
Chr.Chromosome 22 (human)[1]
Chromosome 22 (human)
Genomic location for TNFRSF13C
Genomic location for TNFRSF13C
Band22q13.2Start41,922,023 bp[1]
End41,926,818 bp[1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_052945

NM_028075
NM_001357758

RefSeq (protein)

NP_443177

NP_082351
NP_001344687

Location (UCSC)Chr 22: 41.92 – 41.93 MbChr 15: 82.22 – 82.22 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

BAFF receptor (B-cell activating factor receptor, BAFF-R), also known as tumor necrosis factor receptor superfamily member 13C (TNFRSF13C) and BLyS receptor 3 (BR3), is a membrane protein of the TNF receptor superfamily which recognizes BAFF, an essential factor for B cell maturation and survival.[5][6] In humans it is encoded by the TNFRSF13C gene.[7]

Function[edit]

B-cell activating factor (BAFF) enhances B-cell survival in vitro and is a regulator of the peripheral B-cell population. The protein encoded by this gene is a receptor for BAFF and is a type III transmembrane protein containing a single extracellular phenylalanine-rich domain. It is thought that this receptor is the principal receptor required for BAFF-mediated mature B-cell survival.[7] In B cell maturation, due to regulation by BAFF-R, only a limited amount of B-cell will survive.[8]

Clinical significance[edit]

Overexpression of BAFF in mice results in mature B-cell hyperplasia and symptoms of systemic lupus erythematosus (SLE). Also, some SLE patients have increased levels of BAFF in serum. Therefore, it has been proposed that abnormally high levels of BAFF may contribute to the pathogenesis of autoimmune diseases by enhancing the survival of autoreactive B cells, which are cells that show immune response to normal body cells.[7] Autoreactive B cells are less sensitive toward BAFF and are usually outcompeted by the normal B cells in the maturation process regulated by low BAFF-R expression. An elevated level of BAFF-R can therefore overcome this decreased response and result in accumulation of autoreactive B cells.[8]

BAFF and BAFF-R pair can also down-regulate the cell apoptosis process.[9]

See also[edit]

References[edit]

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000159958 - Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000068105 - Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Thompson JS, Bixler SA, Qian F, Vora K, Scott ML, Cachero TG, Hession C, Schneider P, Sizing ID, Mullen C, Strauch K, Zafari M, Benjamin CD, Tschopp J, Browning JL, Ambrose C (September 2001). "BAFF-R, a newly identified TNF receptor that specifically interacts with BAFF". Science. 293 (5537): 2108–11. doi:10.1126/science.1061965. PMID 11509692.
  6. ^ Yan M, Brady JR, Chan B, Lee WP, Hsu B, Harless S, Cancro M, Grewal IS, Dixit VM (October 2001). "Identification of a novel receptor for B lymphocyte stimulator that is mutated in a mouse strain with severe B cell deficiency". Current Biology. 11 (19): 1547–52. doi:10.1016/S0960-9822(01)00481-X. PMID 11591325.
  7. ^ a b c "Entrez Gene: TNFRSF13C tumor necrosis factor receptor superfamily, member 13C".
  8. ^ a b Brink R (October 2006). "Regulation of B cell self-tolerance by BAFF". Seminars in Immunology. 18 (5): 276–83. doi:10.1016/j.smim.2006.04.003. PMID 16916609.
  9. ^ Rauch M, Tussiwand R, Bosco N, Rolink AG (2009-05-06). "Crucial role for BAFF-BAFF-R signaling in the survival and maintenance of mature B cells". PLOS ONE. 4 (5): e5456. doi:10.1371/journal.pone.0005456. PMC 2673681. PMID 19421318.

External links[edit]

Further reading[edit]

This article incorporates text from the United States National Library of Medicine, which is in the public domain.