Talk:Big O notation

From Wikipedia, the free encyclopedia
Jump to: navigation, search
          This article is of interest to the following WikiProjects:
WikiProject Computing (Rated B-class, Mid-importance)
WikiProject icon This article is within the scope of WikiProject Computing, a collaborative effort to improve the coverage of computers, computing, and information technology on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
B-Class article B  This article has been rated as B-Class on the project's quality scale.
 Mid  This article has been rated as Mid-importance on the project's importance scale.
 
WikiProject Mathematics (Rated B-class, Mid-importance)
WikiProject Mathematics
This article is within the scope of WikiProject Mathematics, a collaborative effort to improve the coverage of Mathematics on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
Mathematics rating:
B Class
Mid Importance
 Field: Analysis
One of the 500 most frequently viewed mathematics articles.
WikiProject Computer science (Rated B-class, Top-importance)
WikiProject icon This article is within the scope of WikiProject Computer science, a collaborative effort to improve the coverage of Computer science related articles on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
B-Class article B  This article has been rated as B-Class on the project's quality scale.
 Top  This article has been rated as Top-importance on the project's importance scale.
 

Algorithms and their Big O performance[edit]

I'd like to put in some mention of computer algorithms and their Big O performance: selection sort being N^2, merge sort N log N, travelling salesman, and so on, and implications for computing (faster computers don't compensate for big-O differences, etc). Think this should be part of this write-up, or separate but linked?

I think separate would be better, to increase the article count :-). Then you can have links from the Complexity, Computation and Computer Science pages. Maybe you can call it "Algorithm run times" or something like that. --AxelBoldt
Or something like analysis of algorithms or Algorithmic Efficiency since you may sometimes choose based on other factors as well. --loh
I'd recommend puting it under computational complexity which earlier I made into a redirect to complexity theory. It should be a page of it's own, but I didn't want to write it ;-) --BlckKnght

Removed polylogarithmic[edit]

Reinstated my VERY bad. Missed a bracket

"Tight" bounds?[edit]

The article refers to terms "tight" and "tighter", but these terms are never defined! Alas, other pages (e.g. "bin packing") refer to this page as the one giving a formal definition of this term; moreover, "Asymptotically tight bound" redirects here. Yes, the term is intuitively clear, but a math-related page should have clear definitions.

I think a short section giving a formal definition of the term "tight bound" and referring to Theta-notation is needed (e.g. as a subsection of section "8. Related asymptotic notations"), and once such a section is created the redirection from "Asymptotically tight bound" should link directly there.

Suppressed imprecise references in the lead[edit]

I have suppressed the two references in the lead, which were (and this is an understatement) very imprecise. The first one, while correctly reporting the first use of O by Bachmann, and its adoption by Landau in 1909, asserted it was "included in a more elaborate notation which included o(.), etc". It is true that Landau adopted the symbol O and invented the symbol o in 1909. But that's it. So the last "etc" in the author's assertion indicates only one thing: that he himself never read Landau's book. The second one asserted that both symbols (o and O) were first introduced by Bachmann in 1894. Which is false. So I replaced these references by Bachmann's and Landau's books. Sapphorain (talk) 20:36, 3 July 2016 (UTC)