# Talk:Elias omega coding

WikiProject Computer science
This article is within the scope of WikiProject Computer science, a collaborative effort to improve the coverage of Computer science related articles on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.

Who is Elias and why isn't that question addressed on this page? Michael Hardy 03:40, 23 Jan 2005 (UTC)

He's the guy that came up with these codes and it isn't addressed because no one has done it yet. -- Antaeus Feldspar 04:54, 23 Jan 2005 (UTC)
Maybe it's the mysterios P. Elias? see http://ieeexplore.ieee.org/xpl/abs_free.jsp?arNumber=1055349 . --Abdull 16:11, 9 March 2006 (UTC)
It's Peter Elias according to David Salomon's book "Variable-length Codes for Data Compression". I've added a link to Peter Elias for his delta, omega, and gamma codes. SteveJothen (talk) 19:44, 16 February 2009 (UTC)

## Implied probability

Classicalecon (talk · contribs) added "Implied probability" values to some of the entries of the table. I removed them because the article did not explain what "implied probability" was supposed to mean, and also because "implied probability" is not really accurate.

Ideally one picks a universal code to use so that a symbol which takes n bits to encode has a probability as close to 1/(n^2) as possible. This is not limited to this particular code; it's a basic fact of compression. If a symbol occurs 1/2 of the time, its optimal encoding is in 1 bit. If a symbol occurs 1/4 of the time, its optimal encoding is in 2 bits; if 1/8 of the time, in 3 bits; so on and so forth.

However, it's quite rare that one's probabilities would work out to exact powers of 2 like that. It's even rarer that all one's probabilities would work out to the exact powers of 2 that correspond to the specific powers of 2 that are optimal for a particular universal code. To say, therefore, that using a symbol of a particular bit length "implies" a particular probability is ... just grossly wrong.