# Talk:Frequency response

## Audio frequency response

Frequency response is often used to describe the performance of audio-related devices, however, it is also often used to describe the performance of, for example, coaxial cables, category cables, video switchers, wireless communications. All of those examples operate well into the gigahertz range. Subsonic examples could include earthquakes, electroencephalography (brain waves). This article should touch on all major disciplines where a frequency response measurement is often used. Snottywong 14:37, 13 September 2007 (UTC)

I agree with you. Perhaps you'll want to add to or reorganize my changes. Binksternet 16:17, 13 September 2007 (UTC)

## Phase Response

This article implies that the phase response is part of the frequency response. While they are often seen next to each other in specs and whatnot, I think the frequency response and the phase response are two different things. Phase shouldn't be mentioned in this article.Snottywong 14:22, 13 September 2007 (UTC)

I don't agree. Frequency response and Bode plot are for me the same thing: Magnitude AND phase plot together. If you want to be more specific, you could say magnitude/amplitude or phase plot. User:Nillerdk (talk) 09:06, 27 July 2008 (UTC)
Right. Phase response and frequency response go hand in hand. Binksternet (talk) 18:12, 27 July 2008 (UTC)

Shouldn't this page be merged with transfer function? Jorge Stolfi 03:20, 25 Mar 2004 (UTC)

No. The two are not the same thing at all. Graham 05:08, 25 Mar 2004 (UTC)
Ok, but then the definition of "frequency response" needs to be made more precise.
As it is, one could argue that the two are synonymous, and that the phrase "X has a frequency response of 20Hz - 20,000Hz ±1dB" is only an informal way of saying "the frequency response (=transfer function) of X has constant modulus, ±1dB, between 20Hz and 20,000Hz".
"The frequency response of a signal processing system is the range of frequencies over which the system's gain is constant, within a prescribed tolerance. For example, a high-fidelity audio amplifier may be said to have a frequency response of 20Hz - 20,000Hz ±1dB, which tells you that the system responds equally to all frequencies within that range and within the limits quoted.

It is commonly used in connection with electronic amplifiers and similar systems, particularly in relation to audio signals. As such it is not a measure that is very useful in terms of the quality of reproduction, only that it fulfils the basic requirements needed for it.
Jorge Stolfi 00:17, 26 Mar 2004 (UTC)

I accept the rewording is something of an improvement, so feel free to amend the article. However, you are confused, I think, as to what transfer function means. The rewording doesn't mention this, so it doesn't matter in this context. Transfer function has a much wider meaning than frequency response, and can be applied to almost any system that has an input and an output. In respect of an amplifier, the transfer function is more to do with its linearity (i.e. distortion) than frequency response, though I suppose the case could be made for talking about the transfer function as it varies with frequency. Knowing this, one could extract the frequency response from it. TF is a complex, multi-dimensional aspect of a system, the FR is merely one limited "view" of it, which ignores many other parameters. Hope this helps! Graham 01:57, 26 Mar 2004 (UTC)

someone needs to add how the frequency response is related to the Fourier transform, eigenfunctions, and LTI system theory.

Yeah, right now the article doesn't address frequency response as I learned it at all. Namely if you've got some system with frequency response H(ω), input x(t) and output y(t) then you know that
${\displaystyle {\hat {y}}(\omega )=H(\omega ){\hat {x}}(\omega )}$
where the hats indicate Fourier transforms, and therefore the phase of H(ω) is important, contrary to what the article currently says.
It does say that you can find the frequency response by using a Dirac delta function, which is the only reason I didn't doubt the terminology I learned in my very few engineering classes. So if x(t) = δ(t)
${\displaystyle {\hat {x}}(t)={\frac {1}{\sqrt {2\pi }}}}$
${\displaystyle H(\omega )={\sqrt {2\pi }}{\hat {y}}(\omega )=\int _{0}^{\infty }y(t)e^{i\omega t}dt}$
--Laura Scudder | Talk 22:08, 16 Apr 2005 (UTC)
Just keep in mind that all of that is only for LTI systems. Cburnett 22:35, Apr 16, 2005 (UTC)

## Merger (with full frequency response)

There is a merge banner suggesting full frequency response is merged with this page. I'd suggest simply deleting FFR - it's a very subjective definition (what's the full frequency response of an RF amplifier?), largely meaningless. Unless I'm missing something? GyroMagician (talk) 18:14, 3 June 2009 (UTC)

• Oppose. That other article needs expansion, not merging with this one. The original Decca_Records#FFRR should be mentioned, and the use of FFR as a marketing term should as well. This article is not about marketing. Binksternet (talk) 18:32, 3 June 2009 (UTC)
• Oppose. This article is about frequency response in general, (although the article is sadly lacking RF coverage) not audio frequency or hearing (sense) both of which would make better targets. However hearing range would seem to be its best home if you really insist on merging with anything. SpinningSpark 20:20, 11 August 2009 (UTC)
• Agree The article entitled Full frequency response may be Original research and lacks Verifiability. The title for this article appears to be used only for commercials and marketing claims, see: WP:Notability. I placed the appropriate templates on this article. I didn't reccomend Article for Deletion because the AfD server has a large load. I would have reccomended AfD so that the aritcle would at least be merged. I reccomend that this article be re-named or merged. Ti-30X (talk) 02:38, 8 September 2009 (UTC)

## H(jω) vs H(ω)

I don't understand how you can have a function of jω (like what would y(2x) = 5x mean?), but this is often written this way. What's the difference? 71.167.58.9 (talk) 21:59, 21 January 2014 (UTC)