Talk:Logarithmic scale

From Wikipedia, the free encyclopedia
Jump to: navigation, search
WikiProject Mathematics (Rated C-class, High-priority)
WikiProject Mathematics
This article is within the scope of WikiProject Mathematics, a collaborative effort to improve the coverage of Mathematics on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
Mathematics rating:
C Class
High Priority
 Field:  Basics
One of the 500 most frequently viewed mathematics articles.

Color of graphs are hard to see[edit]

Please use colors that can be distinguished. The red and greens that were chosen are hard to see. Use a bright lime color or yellow instead dark green please.

Other topics[edit]

I believe I have made the appropiate changes to the last part of the article. I haven't altered the actual content, only the writing style. I have taken out references like I and you and replaced it with adequate substitutes, I would hope the writer could check to make sure I haven't done anything wrong though. A happybunny 16:47, 12 February 2007 (UTC)

I just cleaned up the last part of the article further in the interest of readability, spelling and grammar. I've rearranged a few sentences to be ore concise, and adjusted the maths and layout so that it's all easier to follow. TaintedCherub 14:14, 18 February 2007 (UTC)

The example given for accurate determination of values on a logarithmic axis ie, (10^0.5)*10 would be more clear if it used a number whose nearest decade line with lower value is not 10. For instance, if the example were

Example: What is the value that lies halfway between the 1 and 10 decades on a logarithmic axis? Since it is the halfway point that is of interest, the quotient of steps 1 and 2 is 0.5. The nearest decade line with lower value is 1, so the halfway point's value is (10^0.5)*1.

there would be no confusing of the exponent base and the next lower decade line 14:09, 3 May 2007 (UTC)Miles Libbey

if its possible i think a blank logarithmic and half-logarithmic pages would have been nice add to the bottom of the article, can be very handy to some.

I've added a major section on Logarithmic and Semi-Logarithmic Plots and Equations of Lines. The discussion and examples are from text I've developed and used a great deal in my own work and that I think further ellucidates graphing on logarithmic scales. Odarren 09:11 14 June 2007 (UTC)

help please![edit]

It would be great if someone could make this page more accessible to non-mathematically oriented persons by explaining in layman's terms how to calculate log points and adding a table with the correspondence between log points and percentages. —Preceding unsigned comment added by (talk) 19:49, 28 February 2008 (UTC)

I cant understand a word of this. help? —Preceding unsigned comment added by (talk) 23:05, 31 December 2008 (UTC)

The logarithmic interpolation is very difficult to follow, both in mathematical reasoning and paragraph spacing format. Also, it only covers interpolation based on physical measurements of a graph, not coordinates, and even then only includes a worked example without a general formula or simple instructions how to apply it to a different case. —Preceding unsigned comment added by (talk) 20:31, 21 December 2009 (UTC)

If this article were more elegantly written I think it would be much easier to understand. Yes, it is a difficult subject but the writing here makes it more so. SG —Preceding unsigned comment added by (talk) 20:13, 2 March 2010 (UTC)

Why can't I understand anything? Maybe the words used should be simplified to everyday language instead.... —Preceding unsigned comment added by (talk) 23:05, 31 December 2008 (UTC) —Preceding unsigned comment added by (talk)

No mention of finance?[edit]

Log plots are extremely common in finance as constant Rate of returns show up as straight lines.DavidRF (talk) 23:01, 9 October 2008 (UTC)


See Wikipedia:Reference_desk/Mathematics#calculation_help (from May 13, 2010) on the need for a logarithmic substitute for the percent. Bo Jacoby (talk) 05:04, 17 May 2010 (UTC).

Logarithmic and semi-logarithmic plots and equations of lines[edit]

I can't follow the discussion in the Logarithmic scale#Logarithmic and semi-logarithmic plots and equations of lines section and the 1 dimensional graphs don't make any sense to me. I'm writing new text to discuss how different functions appear when plotted on the different logarithmic scale graphs:

-- Autopilot (talk) 17:44, 26 June 2010 (UTC)

In the first part of this section there appears to be some confusion of the bases of logarithms. For example, I believe that this text:

 "In the first case, plotting the equation on a semilog
  scale (log Y versus X) gives: log Y = −aX, which is linear."

should make it clear that the logarithm is to base e and not to base 10. I haven't corrected this because I may have misunderstood the concept. If you know more about logarithms than I please edit the text to make explicit references to the bases of the logarithms.

-- Iain Robinson

Not True Iain if you tell that to an engineer you will most likely get laughed at. Entire engineering department depends on a base ten Log-log scale. And a Log-Log scale or semi-log can be of any base the principal is the same. I guess it just needs to be a more general explanation with a base ten example. In engineering base ten is used far more often than base e. dB, dBm, dBmV, dBuV, dBmA, dBuA, etc. Dominate mil standards and industry standards when you are talking about cross-talk, radiated susceptibility, conducted susceptibility, radiated emissions, conducted emissions, shielding effectiveness, signal integrity, etc. --Ervin Seferi (Math, Physics major and Test Engineer Profession) — Preceding unsigned comment added by (talk) 11:30, 21 July 2011 (UTC)

Definition is wrong[edit]

The current incorrect definition:

A logarithmic scale is a scale of measurement using the logarithm of a physical quantity instead of the quantity itself.

Correct suggestion:

A logarithmic scale is a scale of measurement where the labels are placed at distances proportional to the differences between their logarithms. Since the logarithm of 1 is zero, this implies that the distance between 1 and x is proportional to the logarithm of x.

Also, I don't like this paragraph, I think it is confusing. What size are the increments, it doesn't mention that they are equidistant, and what exactly is a "unit increase"? :

A simple example is a chart whose vertical axis increments are labeled 1, 10, 100, 1000, instead of 1, 2, 3, 4. Each unit increase on the logarithmic scale thus represents an exponential increase in the underlying quantity for the given base (10, in this case). — Preceding unsigned comment added by (talk) 17:00, 29 September 2011 (UTC)


          A GAME JUST LIKE CRICKET  — Preceding unsigned comment added by (talk) 15:23, 31 March 2014 (UTC) 

semi logarithmic hyphen[edit]

According to there is no hyphen. Sometimes there's a hyphen and in this article there is a space. Which is correct? QuentinUK (talk) 07:02, 23 August 2015 (UTC)

Sounds like a question for the MOS. Dondervogel 2 (talk) 08:43, 23 August 2015 (UTC)

lead paragraph[edit]

The lead paragraph notes that "A logarithmic scale is a nonlinear scale used when there is a large range of quantities." Even though my fundamentals of psychology classes are part of the distant past I still remember that some quantities -- such as sound and brightness -- are measured on logarithmic scales not only because of the potentially large range of values but also because human perception of these phenomena is itself logarithmic. For example, doubling the amount of sound energy will not create a sound twice as loud...maybe just 150% louder...I forget the specific numbers. Some of the other phenomena, such as earthquakes, might behave similarly -- doubling the input doesn't necessarily double the output. I think it would be interesting and valuable to explain that using a logarithmic scale isn't just a matter of numerical convenience but can be directly linked to the matter at hand. PurpleChez (talk) 18:08, 23 March 2017 (UTC)