Talk:Point reflection

From Wikipedia, the free encyclopedia
Jump to: navigation, search
WikiProject Mathematics (Rated Start-class, Low-importance)
WikiProject Mathematics
This article is within the scope of WikiProject Mathematics, a collaborative effort to improve the coverage of Mathematics on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
Mathematics rating:
Start Class
Low Importance
 Field: Geometry


I signal an incoherence in terminology: the reflection article says a reflection has only one eigenvalue -1 (and all its examples adhere to this) so a "point reflection" is not a reflection (actually, in the plane I would consider it a rotation rather than a reflection). I think the proper term is "point symmetry" (which I just redirected here; it used to point to symmetry group for no apparent reason), and would suggest a corresponding page move. But I'm not particularly acquainted with English geometry literature, so I'll stand corrected if this is common terminology. However the reflection through the origin article does call the use of "reflection" an abuse of language. Marc van Leeuwen (talk) 15:40, 4 April 2010 (UTC)

Point reflections do not fall under the framework for a reflection described in the reflection (mathematics) article, but it is nonetheless the common terminology for this transformation (see Google books for examples). "Point symmetry" refers to a slightly different concept, in the same way that reflection symmetry is different from reflection. Jim (talk) 16:02, 4 April 2010 (UTC)


I’ve just merged inversion in a point and reflection through the origin (the latter of which I wrote, not knowing of this page) to this page, as they cover the same topic.

The only meaningful distinctions I can see that could be made would be:

  • affine vs. vector (reflection through any point vs. reflection through the origin);
  • low dimensions (2D, 3D) for novices vs. arbitrary dimension (n-dimensions) for initiates.

For such a simple topic I think these topics can all effectively be covered in a single page, though the current page could use some work.

—Nils von Barth (nbarth) (talk) 09:28, 14 April 2010 (UTC)

Point reflection as special case of uniform scaling or homothety[edit]

If I correctly understand the text of this article:

I think this should be mentioned in the article. I'll propose an edit. Feel free to improve. Paolo.dL (talk) 17:12, 23 February 2012 (UTC)

Novel distinction?[edit]

An object that is invariant under a point reflection is said to possess point symmetry; if it is invariant under point reflection through its center, it is said to possess central symmetry or to be centrally symmetric.

Is there a compact set that is symmetric about a point P that is not its "center"?

Apparently the word "center" does not have a mathematical definition, only an everyday language one. (talk) 15:22, 17 December 2015 (UTC)