Talk:Posterior probability

From Wikipedia, the free encyclopedia
Jump to: navigation, search
WikiProject Statistics (Rated Start-class, High-importance)
WikiProject icon

This article is within the scope of the WikiProject Statistics, a collaborative effort to improve the coverage of statistics on Wikipedia. If you would like to participate, please visit the project page or join the discussion.

Start-Class article Start  This article has been rated as Start-Class on the quality scale.
 High  This article has been rated as High-importance on the importance scale.
WikiProject Mathematics (Rated Start-class, Mid-importance)
WikiProject Mathematics
This article is within the scope of WikiProject Mathematics, a collaborative effort to improve the coverage of Mathematics on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
Mathematics rating:
Start Class
Mid Importance
 Field:  Probability and statistics


Can anybody comment on the difference between posterior probability, likelihood function and conditional probability? It seems to me the difference relies on which variable is treated as random while the other treated as fixed. From the book "Applied multivariate statistical analysis" by Richard A. Johnson & Dean W. Wichern, there seems to be no major difference between posterior probability and likelihood function. On page 639, it obviously implies that observation is fixed while parameter is random for a posterior probability, on page 178, it explicitly defines that "the expression considered as a function of mu and sigma for the fixed set of observations is called likelihood". Thus it seems to me these two say the same thing but bear different names. The wiki page for likelihood function,, is a bit confusing for those (like me) who are not familiar with the notations; and the wiki page for posterior probability,, explicitly says posterior = prior * likelihood function and likelihood function = p(x|theta). I guess the writer actually means that the likelihood function equals in magnitude, but not defined as p(x|theta).

I am not an expert in this field, thus dare not to make modifications. Can anybody who really knows these concepts update the context to address my concerns and give explicit relationship between these quantities so that laymen can easily clean their minds? Thanks! —Preceding unsigned comment added by True bsmile (talkcontribs) 07:04, 17 June 2010 (UTC)

I hate to complain without trying to fix it, but I'm not in a position to right now. The definition on this page needs help. An expression of proportionality is not a definition: a definition needs to have an equals sign in it. It seems like the full definition could be easily derived from Bayes's rule, but I leave this to the experts. -Nonstandard (talk) 21:52, 5 August 2011 (UTC)

About the example[edit]

How was the value in the first example - P(A|B) = 1/3 - derived?
I tried to recreate it using Bayes' Theorem: P(A|B) = P(B|A)*P(A) / P(B)
I took:

 P(B|A) = (1/2)*(1/2) = (1/4)   
 P(A) = (1/2)
 P(B) = (1/2)*(1/2) + (1/2)*1 

And I got

P(A|B) = (1/4)*(1/2) / (1/4 + 1/2) = (1/8) / (3/4) = 1/6

Did I make a mistake anywhere? (talk) 09:28, 27 February 2009 (UTC) Siim

yes, you made a mistake. P(B|A) = 1/2. If A happens, you flip a fair coin so in that case you get B with 1/2. —Preceding unsigned comment added by (talk) 15:01, 21 March 2009 (UTC)

The mistake is in the wording of the example. Your error is in specifying the coin in which we have knowledge is a heads. Let me explain this visually:

1.HH 2.HT 3.TH 4.TT

These are the possible results of a double coin flip, each with an equal probability of 1/4. Knowledge that the second coin flip resulted in heads eliminates the possibility of #2 and #4occuring. The remaining outcomes HH, and TH both have an equal probability of occuring, thus the probability of the first coin flip being heads is still 1/2. The prior knowledge that landing two heads in a row is less likely than landing a head and tail (in either order) made you overlook that the latter probability is infact an amalgamation of two independant events. A correct wording would be: A friend flips two coins and tells you that one of them is heads. What is the probability that the other is also heads? Answer: none. This is an impossible situation because if you're here reading this, you have no friends. Haha, kidding, but what the hell am I doing here when I have an exam to study for? —Preceding unsigned comment added by (talk) 10:34, 30 April 2009 (UTC)

Posterior probability example[edit]

The example should probably include the word "posterior probability" in it somewhere, so that the completely uninitiated (the audience of this page) don't have to make tenuous inferences about how the example applies. (talk) 13:59, 18 May 2013 (UTC)