Talk:The Quadrature of the Parabola

From Wikipedia, the free encyclopedia
Jump to: navigation, search
WikiProject Mathematics (Rated Start-class, Mid-importance)
WikiProject Mathematics
This article is within the scope of WikiProject Mathematics, a collaborative effort to improve the coverage of Mathematics on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
Mathematics rating:
Start Class
Mid Importance
 Field: Geometry (historical)

Moved from the end of the intro[edit]

In 1906 Heiberg suggested that Archimedes' proof was written as

4A/3 = A + A/4 + A/12[citation needed]

Archimedes' proof was also written as
1, 5/8, 14/27, 30/64, ....., Pn/n3, ..... tends at number 1/3, as n tends to infinity
where the numerator of the sequence terms is the nth square pyramidal number Pn.
see "Quadrature of the parabola with the square pyramidal number" in this talk page.--Ancora Luciano (talk) 18:50, 14 May 2013 (UTC)

Proof by abstract mechanics[edit]

diagram for the mechanical proof

As Archimedes gave two proofs, can we have a section for the other one too, the proof by abstract mechanics? I'd do it, but don't really have the skills for a mathematical article.--Annielogue (talk) 15:31, 24 November 2012 (UTC)

Quadrature of the parabola with the "square pyramidal number" (new proof)[edit]

This proof (possibly unpublished) of the Archimedes' theorem: "Quadrature of the parabolic segment" is obtained numerically, without the aid of Mathematical Analysis. Below we show a summary of the proof. The entire article is at the following web address:
Quadrature of the Parabola

Proposition: The area of ​​ parabolic segment is a third of the triangle ABC.

Divide AB and BC into 6 equal parts and use the green triangle as measurement unit of the areas.

The triangle ABC contains:

(1+3+5+7+9+11).6 = 62.6 = 63 green triangles.

The parabola circumscribed figure (in red) contains:

A(cir.) = 6.1 + 5.3 + 4.5 + 3.7 + 2.9 + 1.11 = 91 green triangles. (3)

The sum (3) can be written:

A(cir.) = 6 + 11 + 15 + 18 + 20 + 21 , that is:

or rather:

A(cir.) = sum of the squares of first 6 natural numbers !

Generally, for any number n of divisions of AB and BC, it is:

  1. The triangle ABC contains n3 green triangles
  2. An(cir.) = sum of the squares of first n natural numbers

So, the saw-tooth figure that circumscribes the parabolic segment can be expressed with the "square pyramidal number" of number theory! For the principle of mathematical induction, this circumstance (which was well hidden in (3)) we can reduce the proof to the simple check of the following statement:

the sequence of the areas ratio: 1, 5/8, 14/27, 30/64, ....., Pn/n3, ..... tends at number 1/3, as n tends to infinity (4a)

where the numerator of the sequence terms is the nth square pyramidal number Pn.

But (4a) state that: the area (measured in green triangles) of the circumscribed figure is one-third the area of ​​the triangle ABC, at the limit of n = infinity. End of proof

This proof is very beautiful! Notice its three essential steps:

  1. Choice of equivalent triangles for measuring areas.
  2. With this choice, the area of ​​triangle ABC measure n3 triangles.
  3. Counting the number of triangles in the saw-tooth figure that encloses the parabolic segment and discovery that, for each number n of divisions, this number is the square pyramidal number !

The rest came by itself.--Ancora Luciano (talk) 18:49, 14 May 2013 (UTC)

Areas of the Triangles[edit]

In this section, there are some diagrams, and this statement:

"Archimedes proves that the area of each green triangle is one eighth of the area of the blue triangle. From a modern point of view, this is because the green triangle has half the width and a fourth of the height:[1]"

Note [1] says: "The green triangle has half of the width of blue triangle by construction. The statement about the height follows from the geometric properties of a parabola, and is easy to prove using modern analytic geometry."


I'm too dumb to do this - I came to this article to learn something, and I'm not able to understand it fully because of this omission. The point of an encyclopedia is to provide information to people who don't already have that information. In this respect, this article fails at this point.

Please could someone smart fill in this bit? (talk) 09:30, 18 November 2015 (UTC)

Assessment comment[edit]

The comment(s) below were originally left at Talk:The Quadrature of the Parabola/Comments, and are posted here for posterity. Following several discussions in past years, these subpages are now deprecated. The comments may be irrelevant or outdated; if so, please feel free to remove this section.

This really needs a section on the historical significance. Jim 03:24, 13 August 2007 (UTC)

Isn't the label on the fourth illustration wrong? It now reads "Archimedes' proof that 1/4 + 1/16 + 1/64 + ... = 4/3", but shouldn't that be "= 1/3"?

Rob Cranfill (talk) 19:23, 29 January 2008 (UTC)

Last edited at 19:24, 29 January 2008 (UTC). Substituted at 02:38, 5 May 2016 (UTC)

External links modified[edit]

Hello fellow Wikipedians,

I have just modified one external link on The Quadrature of the Parabola. Please take a moment to review my edit. If you have any questions, or need the bot to ignore the links, or the page altogether, please visit this simple FaQ for additional information. I made the following changes:

When you have finished reviewing my changes, you may follow the instructions on the template below to fix any issues with the URLs.

You may set the |checked=, on this template, to true or failed to let other editors know you reviewed the change. If you find any errors, please use the tools below to fix them or call an editor by setting |needhelp= to your help request.

  • If you have discovered URLs which were erroneously considered dead by the bot, you can report them with this tool.
  • If you found an error with any archives or the URLs themselves, you can fix them with this tool.

If you are unable to use these tools, you may set |needhelp=<your help request> on this template to request help from an experienced user. Please include details about your problem, to help other editors.

Cheers.—InternetArchiveBot (Report bug) 06:09, 12 January 2017 (UTC)