# Talk:Von Mises–Fisher distribution

WikiProject Statistics (Rated Start-class, Low-importance)

This article is within the scope of the WikiProject Statistics, a collaborative effort to improve the coverage of statistics on Wikipedia. If you would like to participate, please visit the project page or join the discussion.

Start  This article has been rated as Start-Class on the quality scale.
Low  This article has been rated as Low-importance on the importance scale.
WikiProject Mathematics (Rated Start-class, Low-priority)
This article is within the scope of WikiProject Mathematics, a collaborative effort to improve the coverage of Mathematics on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
Mathematics rating:
 Start Class
 Low Priority
Field: Probability and statistics

Presumably it generalizes to a Mises distribution (circle) for p=3, not p=2, since circles are 2-dimensional and the von Mises-Fisher distribution is p-1 dimensional. There might be something I missed though, so I'm not going to change it without confirmation. --Smári McCarthy 13:16, 19 July 2006 (UTC)

The circle is not 2-dimensional, but 1-dimensional, as any point on the circle can be uniquely identified by a singe angle. Similarly, the sphere is 2-dimensional, as each point can be identified by a pair of polar angles. However, you do need an extra dimension to 'represent' the circle or sphere without distortions. --TomixDf Mon Aug 7 12:02:13 2006

## The R notation is undefined

what is it ? — Preceding unsigned comment added by 92.133.97.155 (talkcontribs)

I think the "mean resultant vector". See Directional statistics. --Tobias1984 (talk) 14:13, 29 July 2015 (UTC)

## Someone please clarify which von Mises

Was it Ludwig von Mises, the Austrian economist? The article doesn't say, nor does the article on the von Mises distribution. I was surprised recently to find out that LvM had in fact done early work on algorithmic randomness. --Trovatore (talk) 01:17, 23 February 2008 (UTC)

It was his brother, Richard von Mises. Tomixdf (talk) 09:04, 23 February 2008 (UTC)

## Mardia reference missing

What is the Mardia (2000) reference? — Preceding unsigned comment added by 128.243.253.117 (talk) 13:03, 13 June 2011 (UTC)

## Polar coordinates?

The article first states that x is a p-dimensional unit vector. Then there is a comment that says "Note that the equations above apply for polar coordinates only.". I don't believe this is the case? The references seem to refer to x in R^(p). If I've missed something, then surely at the least these are hyperspherical coordinates, not polar?

I tried testing this in a very simple 2D (circle) case, and using cartesian coordinates gave me the expected result --TheKrimsonChin (talk) 15:35, 27 February 2015 (UTC)

Indeed the reported functions are for cartesian, not polar(spherical in reality) coordinates, I'm going to fix it. [Silvano Galliani] — Preceding unsigned comment added by 192.33.89.33 (talk) 08:11, 26 June 2015 (UTC)