Talk:Zeno's paradoxes

From Wikipedia, the free encyclopedia
Jump to: navigation, search
          This article is of interest to the following WikiProjects:
WikiProject Philosophy (Rated B-class, Mid-importance)
WikiProject icon This article is within the scope of WikiProject Philosophy, a collaborative effort to improve the coverage of content related to philosophy on Wikipedia. If you would like to support the project, please visit the project page, where you can get more details on how you can help, and where you can join the general discussion about philosophy content on Wikipedia.
B-Class article B  This article has been rated as B-Class on the project's quality scale.
 Mid  This article has been rated as Mid-importance on the project's importance scale.
 
WikiProject Mathematics (Rated B+ class, High-importance)
WikiProject Mathematics
This article is within the scope of WikiProject Mathematics, a collaborative effort to improve the coverage of Mathematics on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
Mathematics rating:
A-BB+ Class
High Importance
 Field: Analysis (historical)
One of the 500 most frequently viewed mathematics articles.
This article has comments.
This article has an assessment summary page.
Former good article Zeno's paradoxes was one of the Philosophy and religion good articles, but it has been removed from the list. There are suggestions below for improving the article to meet the good article criteria. Once these issues have been addressed, the article can be renominated. Editors may also seek a reassessment of the decision if they believe there was a mistake.
Article milestones
Date Process Result
February 13, 2006 Good article nominee Listed
September 14, 2006 Good article reassessment Delisted
Current status: Delisted good article


Bibliography[edit]

This list is intended to collect references thought to be relevant for the article. Delete entries only when they are blatantly and obviously inappropriate. In general, we want not only to collect useful references, but also be able to check new additions against previous discussions that lead to exclusion. Provide diffs, and update section links when they get archived.

The 2001 edition of Salmon's anthology lists at least 218 sources, so it is safe to say that this bibliography cannot be considered anywhere near comprehensive before we have passed the 200 mark.

Salmon's book is one of the best on the subject. Huggett, in his article "Zeno's Paradoxes" in the Stanford Encyclopedia of Philosophy [1] writes: After the relevant entries in this encyclopedia, the place to begin any further investigation is Salmon (2001), which contains some of the most important articles on Zeno up to 1970, and an impressively comprehensive bibliography of works in English in the Twentieth Century . Paul August 14:22, 13 February 2010 (UTC)
The bibliography of my 1970 hardcover edition has 143 entries, the 2001 edition cited above has at least 218 (preview limit, sorry). Paradoctor (talk) 08:32, 25 February 2010 (UTC)
Abstract from the official page at Springer: "A version of nonstandard analysis, Internal Set Theory, has been used to provide a resolution of Zeno's paradoxes of motion. This resolution is inadequate because the application of Internal Set Theory to the paradoxes requires a model of the world that is not in accordance with either experience or intuition. A model of standard mathematics in which the ordinary real numbers are defined in terms of rational intervals does provide a formalism for understanding the paradoxes. This model suggests that in discussing motion, only intervals, rather than instants, of time are meaningful. The approach presented here reconciles resolutions of the paradoxes based on considering a finite number of acts with those based on analysis of the full infinite set Zeno seems to require. The paper concludes with a brief discussion of the classical and quantum mechanics of performing an infinite number of acts in a finite time."
Pages 14-15 (section 3 "Infinite Time" of chapter 1 "the Container of All Things") discuss the arrow paradox.
Footnote 10 on page 410 (for page 15 in section 3 "Infinite Time" of chapter 1 "the Container of All Things") discusses "proposals at the ability to cross an infinite provided infinite acceleration is assumed".
From Amazon's author page (WebCite): 'Kip Sewell holds an MLIS from the University of South Carolina and currently works as an information professional. He has also received BA and MA degrees in Philosophy and has been a college lecturer. "The Cosmic Sphere" (1999) is Sewell's first work on the subject of cosmology. He is currently revising the book and continues to explore issues in science, philosophy, and theology as an independent researcher.'
Apart from this book, Scirus, Google Scholar and WorldCat turned up nothing by Sewell.
IMO, a minor primary source, apparently not peer-reviewed, by a philosopher very early in his career. Paradoctor (talk) 01:17, 2 March 2010 (UTC)
  • Paul A. Fishwick, ed. (1 June 2007). "15.6 "Pathological Behavior Classes" in chapter 15 "Hybrid Dynamic Systems: Modeling and Execution" by Pieter J. Mosterman, The Mathworks, Inc.". Handbook of dynamic system modeling. Chapman & Hall/CRC Computer and Information Science (hardcover ed.). Boca Raton, Florida, USA: CRC Press. pp. 15–22 to 15–23. ISBN 9781584885658. Retrieved 5 March 2010. 
Defines "Zeno behavior", a concept from the field of verification and design of timed event and hybrid systems.
Criticizes the "Received View" on Zeno as untenable. Maintains that a "generally overlooked" key to Zeno arguments is that "they do not presuppose space, neither time". Paradoctor (talk) 17:33, 5 March 2010 (UTC)
Her official homepage (5 March 2010) Paradoctor (talk) 19:52, 5 March 2010 (UTC)

to do[edit]

  • Paul Hornschemeier's most recent graphic novel, The Three Paradoxes, contains a comic version of Zeno presenting his three paradoxes to his fellow philosophers.
  • Zadie Smith references Zeno's arrow paradox, and, more briefly, Zeno's Achilles and tortoise paradox, at the end of Chapter 17 in her novel White Teeth.
  • Brian Massumi shoots Zeno's "philosophical arrow" in the opening chapter of Parables for the Virtual: Movement, Affect, Sensation.
  • Philip K. Dick's short science-fiction story "The Indefatigable Frog" concerns an experiment to determine whether a frog which continually leaps half the distance to the top of a well will ever be able to get out of the well.
  • Allama Iqbal's book The Reconstruction of Religious Thought in Islam discusses the paradox in Lecture II The Philosophical Test of the Revelations of Religious Experience, and suggests that motion is not continuous but discrete.
  • Ursula K. Le Guin's character of Shevek in The Dispossessed discusses the arrow paradox in great amusement with his un-understanding classmates as a child.
  • add missing refs from Rucker section below
  • add refs deleted with this edit

Arrow paradox solution.[edit]

The amount of movement in an instant is infinitesimal, which is not zero, but it is infinitely close to zero. — Preceding unsigned comment added by Bubby33 (talkcontribs) 14:33, 21 December 2014 (UTC)

"Moving rows" paradox needs a better explanation[edit]

A reader noted that one of the paradoxes discussed the moving rows paradox, includes a diagram in a translated excerpt from Aristotle, but this excerpt falls short of articulating the paradox in an understandable way. Perhaps someone who understands the nature the paradox could add a better description, or better yet find a contemporary reliable source with a clear explanation which could be quoted.--S Philbrick(Talk) 13:48, 6 July 2015 (UTC)

Good Article[edit]

I honestly think this could be re-listed as a good article now. 75.167.203.85 (talk) 01:06, 25 July 2015 (UTC)

External links modified[edit]

Hello fellow Wikipedians,

I have just added archive links to one external link on Zeno's paradoxes. Please take a moment to review my edit. If necessary, add {{cbignore}} after the link to keep me from modifying it. Alternatively, you can add {{nobots|deny=InternetArchiveBot}} to keep me off the page altogether. I made the following changes:

When you have finished reviewing my changes, please set the checked parameter below to true to let others know.

N Archived sources still need to be checked

Cheers. —cyberbot IITalk to my owner:Online 23:50, 27 August 2015 (UTC)