Tammes problem

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Some natural systems such as this coral require approximate solutions to problems similar to the Tammes problem

In geometry, Tammes problem is a problem in packing a given number of circles on the surface of a sphere such that the minimum distance between circles is maximized. It is named after a Dutch botanist who posed the problem in 1930 while studying the distribution of pores on pollen grains. It can be viewed as a specialization of the generalized Thomson problem.

See also[edit]

Bibliography[edit]

Journal articles
  • Tammes PML (1930). "On the origin of number and arrangement of the places of exit on pollen grains". Diss. Groningen.
  • Tarnai T; Gáspár Zs (1987). "Multi-symmetric close packings of equal spheres on the spherical surface". Acta Crystallographica. A43: 612&ndash, 616. doi:10.1107/S0108767387098842.
  • Erber T, Hockney GM (1991). "Equilibrium configurations of N equal charges on a sphere" (PDF). Journal of Physics A: Mathematical and General. 24: Ll369&ndash, Ll377. Bibcode:1991JPhA...24L1369E. doi:10.1088/0305-4470/24/23/008.
  • Melissen JBM (1998). "How Different Can Colours Be? Maximum Separation of Points on a Spherical Octant". Proceedings of the Royal Society A. 454 (1973): 1499&ndash, 1508. Bibcode:1998RSPSA.454.1499M. doi:10.1098/rspa.1998.0218.
  • Bruinsma RF, Gelbart WM, Reguera D, Rudnick J, Zandi R (2003). "Viral Self-Assembly as a Thermodynamic Process" (PDF). Physical Review Letters. 90 (24): 248101–1&ndash, 248101–4. arXiv:cond-mat/0211390. Bibcode:2003PhRvL..90x8101B. doi:10.1103/PhysRevLett.90.248101. Archived from the original (PDF) on 2007-09-15.
Books
  • Aste T, Weaire DL (2000). The Pursuit of Perfect Packing. Taylor and Francis. pp. 108&ndash, 110. ISBN 978-0-7503-0648-5.
  • Wells D (1991). The Penguin Dictionary of Curious and Interesting Geometry. New York: Penguin Books. p. 31. ISBN 0-14-011813-6.

External links[edit]