Telluride (chemistry)

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
3D model (JSmol)
  • InChI=1S/Te/q-2 checkY
  • [Te--]
Molar mass 127.60 g·mol−1
Conjugate acid Hydrogen telluride
Related compounds
Other anions
Sulfide, selenide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

The telluride ion is the anion Te2− and its derivatives. It is analogous to the other chalcogenide anions, the lighter O2−, S2−, and Se2−, and the heavier Po2−.[1]

In principle, Te2− is formed by the two-e reduction of tellurium. The redox potential is −1.14 V.[2]

Te(s) + 2 e ↔ Te2−

Although solutions of the telluride dianion have not been reported, soluble salts of bitelluride (TeH) are known.[3]

Organic tellurides[edit]

Tellurides also describe a class of organotellurium compounds formally derived from Te2−. An illustrative member is dimethyl telluride, which results from the methylation of telluride salts:

2 CH3I + Na2Te → (CH3)2Te + 2 NaI

Dimethyl telluride is formed by the body when tellurium is ingested. Such compounds are often called telluroethers because they are structurally related to ethers with tellurium replacing oxygen, although the length of the C–Te bond is much longer than a C–O bond. C–Te–C angles tend to be closer to 90°.[4]

Inorganic tellurides[edit]

Many metal tellurides are known, including some telluride minerals. These include natural gold tellurides, like calaverite and krennerite (AuTe2), and sylvanite (AgAuTe4). They are minor ores of gold, although they comprise the major naturally occurring compounds of gold. (A few other natural compounds of gold, such as the bismuthide maldonite (Au2Bi) and antimonide aurostibite (AuSb2), are known). Although the bonding in such materials is often fairly covalent, they are described casually as salts of Te2−. Using this approach, Ag2Te is derived from Ag+ and Te2−.


Tellurides have no large scale applications. Cadmium telluride has attractive photovoltaic properties.[5] Both bismuth telluride and lead telluride are exceptional thermoelectric materials.[6][7] Some of these thermolectric materials have been commercialized.[8][9][10]


  1. ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
  2. ^ "Standard Reduction Potentials" Archived 2013-02-28 at the Wayback Machine, Indiana University.
  3. ^ Houser, Eric J.; Rauchfuss, Thomas B.; Wilson, Scott R. (1993). "Synthetic and structural studies on (RC5H4)4Ru4E40/2+ (E = sulfur, selenium, tellurium): Mobile metal-metal bonds within a mixed-valence ruthenium (IV)/Ruthenium(III) cluster". Inorganic Chemistry. 32 (19): 4069–4076. doi:10.1021/ic00071a017.
  4. ^ Reid, G., et al. Journal of Organometallic Chemistry, 642 (2002) 186– 190.
  5. ^ Wu, Xuanzhi (2004). "High-efficiency polycrystalline Cd Te thin-film solar cells". Solar Energy. 77 (6): 803–814. Bibcode:2004SoEn...77..803W. doi:10.1016/j.solener.2004.06.006.
  6. ^ Lalonde, Aaron D.; Pei, Yanzhong; Wang, Heng; Jeffrey Snyder, G. (2011). "Lead telluride alloy thermoelectrics". Materials Today. 14 (11): 526–532. doi:10.1016/S1369-7021(11)70278-4.
  7. ^ Goldsmid, H. (2014). "Bismuth Telluride and Its Alloys as Materials for Thermoelectric Generation". Materials. 7 (4): 2577–2592. Bibcode:2014Mate....7.2577G. doi:10.3390/ma7042577. PMC 5453363. PMID 28788584.
  8. ^ "Laird Thermo-electric".
  9. ^ "TeTech".
  10. ^ "Marlow".