Template:List of oxidation states of the elements

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
  Noble gas
+1 Bold values are main oxidation states
Oxidation states of the elements
Element Negative
oxidation
states
Positive
oxidation
states
Group Notes
−5 −4 −3 −2 −1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9
Z
1 hydrogen H −1 +1 1
2 helium He 18
3 lithium Li +1 1 [1]
4 beryllium Be 0 +1 +2 2 [2][3]
5 boron B −5 −1 0 +1 +2 +3 13 [4][5][6]
6 carbon C −4 −3 −2 −1 0 +1 +2 +3 +4 14
7 nitrogen N −3 −2 −1 +1 +2 +3 +4 +5 15
8 oxygen O −2 −1 0 +1 +2 16
9 fluorine F −1 17
10 neon Ne 18
11 sodium Na −1 +1 1 [1]
12 magnesium Mg +1 +2 2 [7]
13 aluminium Al −2 −1 +1 +2 +3 13 [8][9][10]
14 silicon Si −4 −3 −2 −1 0 +1 +2 +3 +4 14 [11]
15 phosphorus P −3 −2 −1 0 +1 +2 +3 +4 +5 15 [12]
16 sulfur S −2 −1 0 +1 +2 +3 +4 +5 +6 16
17 chlorine Cl −1 +1 +2 +3 +4 +5 +6 +7 17 [13]
18 argon Ar 18
19 potassium K −1 +1 1 [1]
20 calcium Ca +1 +2 2 [14]
21 scandium Sc 0 +1 +2 +3 3 [15][16][17]
22 titanium Ti −2 −1 0 +1 +2 +3 +4 4 [18][19][20][21]
23 vanadium V −3 −1 0 +1 +2 +3 +4 +5 5 [19]
24 chromium Cr −4 −2 −1 0 +1 +2 +3 +4 +5 +6 6 [19]
25 manganese Mn −3 −2 −1 0 +1 +2 +3 +4 +5 +6 +7 7
26 iron Fe −4 −2 −1 0 +1 +2 +3 +4 +5 +6 +7 8 [22][23][24]
27 cobalt Co −3 −1 0 +1 +2 +3 +4 +5 9 [19]
28 nickel Ni −2 −1 0 +1 +2 +3 +4 10 [25]
29 copper Cu −2 0 +1 +2 +3 +4 11 [24][26]
30 zinc Zn −2 +1 +2 12 [24][27]
31 gallium Ga −5 −4 −3 −2 −1 +1 +2 +3 13 [9][28][29]
32 germanium Ge −4 −3 −2 −1 0 +1 +2 +3 +4 14 [30][11]
33 arsenic As −3 −2 −1 +1 +2 +3 +4 +5 15 [9][31][32]
34 selenium Se −2 −1 +1 +2 +3 +4 +5 +6 16 [33][34][35][36]
35 bromine Br −1 +1 +3 +4 +5 +7 17
36 krypton Kr +2 18
37 rubidium Rb −1 +1 1 [1]
38 strontium Sr +1 +2 2 [37]
39 yttrium Y 0 +1 +2 +3 3 [38][39]
40 zirconium Zr −2 +1 +2 +3 +4 4 [19][40]
41 niobium Nb −3 −1 +1 +2 +3 +4 +5 5 [19][41]
42 molybdenum Mo −4 −2 −1 0 +1 +2 +3 +4 +5 +6 6 [19]
43 technetium Tc −3 −1 0 +1 +2 +3 +4 +5 +6 +7 7
44 ruthenium Ru −4 −2 0 +1 +2 +3 +4 +5 +6 +7 +8 8 [19][24]
45 rhodium Rh −3 −1 0 +1 +2 +3 +4 +5 +6 9 [19][42]
46 palladium Pd 0 +1 +2 +3 +4 10 [43][44]
47 silver Ag −2 −1 +1 +2 +3 11 [24][45]
48 cadmium Cd −2 +1 +2 12 [24][46]
49 indium In −5 −2 −1 +1 +2 +3 13 [9][47][48]
50 tin Sn −4 −3 −2 −1 0 +1 +2 +3 +4 14 [9][49][50][11]
51 antimony Sb −3 −2 −1 +1 +2 +3 +4 +5 15 [9][51][52][53]
52 tellurium Te −2 −1 +1 +2 +3 +4 +5 +6 16 [9][54][55][56]
53 iodine I −1 +1 +3 +4 +5 +6 +7 17 [57][58]
54 xenon Xe +2 +4 +6 +8 18 [59]
55 caesium Cs −1 +1 1 [1]
56 barium Ba +1 +2 2 [60]
57 lanthanum La 0 +1 +2 +3 3 [61][62]
58 cerium Ce +2 +3 +4 n/a
59 praseodymium Pr 0 +1 +2 +3 +4 +5 n/a [61][63][64][65]
60 neodymium Nd 0 +2 +3 +4 n/a [61][66]
61 promethium Pm +2 +3 n/a [67]
62 samarium Sm 0 +2 +3 n/a [61]
63 europium Eu +2 +3 n/a
64 gadolinium Gd 0 +1 +2 +3 n/a [61]
65 terbium Tb 0 +1 +2 +3 +4 n/a [61][67]
66 dysprosium Dy 0 +2 +3 +4 n/a [61][68]
67 holmium Ho 0 +2 +3 n/a [61][67]
68 erbium Er 0 +2 +3 n/a [61][67]
69 thulium Tm +2 +3 n/a
70 ytterbium Yb +2 +3 n/a
71 lutetium Lu 0 +2 +3 n/a [61][67]
72 hafnium Hf −2 +1 +2 +3 +4 4 [19][69]
73 tantalum Ta −3 −1 +1 +2 +3 +4 +5 5 [19][41]
74 tungsten W −4 −2 −1 0 +1 +2 +3 +4 +5 +6 6 [19]
75 rhenium Re −3 −1 0 +1 +2 +3 +4 +5 +6 +7 7
76 osmium Os −4 −2 −1 0 +1 +2 +3 +4 +5 +6 +7 +8 8 [24][70]
77 iridium Ir −3 −1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9 9 [71][72][73][74]
78 platinum Pt −3 −2 −1 0 +1 +2 +3 +4 +5 +6 10 [24][75][76]
79 gold Au −3 −2 −1 +1 +2 +3 +5 11 [24]
80 mercury Hg −2 +1 +2 12 [24][77]
81 thallium Tl −5 −2 −1 +1 +2 +3 13 [9][78][79][80]
82 lead Pb −4 −2 −1 +1 +2 +3 +4 14 [9][81][82]
83 bismuth Bi −3 −2 −1 +1 +2 +3 +4 +5 15 [83][84][85][86]
84 polonium Po −2 +2 +4 +5 +6 16 [87]
85 astatine At −1 +1 +3 +5 +7 17
86 radon Rn +2 +6 18 [88][89][90]
87 francium Fr +1 1
88 radium Ra +2 2
89 actinium Ac +3 3
90 thorium Th +1 +2 +3 +4 n/a [91][92]
91 protactinium Pa +3 +4 +5 n/a
92 uranium U +1 +2 +3 +4 +5 +6 n/a [93][94]
93 neptunium Np +2 +3 +4 +5 +6 +7 n/a [95]
94 plutonium Pu +2 +3 +4 +5 +6 +7 n/a [96]
95 americium Am +2 +3 +4 +5 +6 +7 n/a [97]
96 curium Cm +3 +4 +5 +6 n/a [98][99][100]
97 berkelium Bk +3 +4 +5 n/a [98]
98 californium Cf +2 +3 +4 +5 n/a [98]
99 einsteinium Es +2 +3 +4 n/a [101]
100 fermium Fm +2 +3 n/a
101 mendelevium Md +2 +3 n/a
102 nobelium No +2 +3 n/a
103 lawrencium Lr +3 n/a
104 rutherfordium Rf +4 4
105 dubnium Db +5 5 [102]
106 seaborgium Sg 0 +6 6 [103][104]
107 bohrium Bh +7 7 [105]
108 hassium Hs +8 8 [106]
109 meitnerium Mt 9
110 darmstadtium Ds 10
111 roentgenium Rg 11
112 copernicium Cn +2 12 [107]
113 nihonium Nh 13
114 flerovium Fl 14
115 moscovium Mc 15
116 livermorium Lv 16
117 tennessine Ts 17
118 oganesson Og 18

References

  1. ^ a b c d e Na(−1), K(−1), Rb(−1), and Cs(−1) are known in alkalides; the table by Greenwood and Earnshaw shows −1 only for Na and also erroneously for Li; no lithides are described.
  2. ^ Be(I) has been observed in beryllium monohydride (BeH); see Shayesteh, A.; Tereszchuk, K.; Bernath, P. F.; Colin, R. (2003). "Infrared Emission Spectra of BeH and BeD" (PDF). J. Chem. Phys. 118 (3): 1158. Bibcode:2003JChPh.118.1158S. doi:10.1063/1.1528606. Archived from the original (PDF) on 2007-12-02. Retrieved 2007-12-10.
  3. ^ Be(0) has been observed; see "Beryllium(0) Complex Found". ChemistryViews. 13 June 2016.
  4. ^ B(−5) has been observed in Al3BC, see Schroeder, Melanie. "Eigenschaften von borreichen Boriden und Scandium-Aluminium-Oxid-Carbiden" (PDF) (in German). p. 139.
  5. ^ B(−1) has been observed in magnesium diboride (MgB2), see Keeler, James; Wothers, Peter (2014). Chemical Structure and Reactivity: An Integrated Approach. Oxford University Press. ISBN 9780199604135.
  6. ^ B(0) has been observed in diborynes, see Braunschweig, H.; Dewhurst, R. D.; Hammond, K.; Mies, J.; Radacki, K.; Vargas, A. (2012). "Ambient-Temperature Isolation of a Compound with a Boron-Boron Triple Bond". Science. 336 (6087): 1420–2. Bibcode:2012Sci...336.1420B. doi:10.1126/science.1221138. PMID 22700924.
  7. ^ Low valent magnesium compounds with Mg(I) have been obtained using bulky ligands; see Green, S. P.; Jones C.; Stasch A. (December 2007). "Stable Magnesium(I) Compounds with Mg-Mg Bonds". Science. 318 (5857): 1754–1757. Bibcode:2007Sci...318.1754G. doi:10.1126/science.1150856. PMID 17991827.
  8. ^ Al(II) has been observed in aluminium(II) oxide (AlO); see D. C. Tyte (1964). "Red (B2Π–A2σ) Band System of Aluminium Monoxide". Nature. 202 (4930): 383–384. Bibcode:1964Natur.202..383T. doi:10.1038/202383a0., and in dialanes (R2Al—AlR2); see Uhl, Werner "Organoelement Compounds Possessing Al—Al, Ga—Ga, In—In, and Tl—Tl Single Bonds" Advances in Organometallic Chemistry Volume 51, 2004, Pages 53–108. doi:10.1016/S0065-3055(03)51002-4
  9. ^ a b c d e f g h i Negative oxidation states of p-block metals (Al, Ga, In, Sn, Tl, Pb, Bi, Po) and metalloids (Si, Ge, As, Sb, Te, At) may occur in Zintl phases, see: [1], p. 259 and [2] (both in German).
  10. ^ Al(−2) has been observed in Sr14[Al4]2[Ge]3, see Wemdorff, Marco; Röhr, Caroline (2007). "Sr14[Al4]2[Ge]3: Eine Zintl-Phase mit isolierten [Ge]4–- und [Al4]8–-Anionen / Sr14[Al4]2[Ge]3: A Zintl Phase with Isolated [Ge]4–- and [Al4]8– Anions". Zeitschrift für Naturforschung B (in German). 62 (10): 1227. doi:10.1515/znb-2007-1001.
  11. ^ a b c "New Type of Zero-Valent Tin Compound". ChemistryViews. 27 August 2016.
  12. ^ P(0) has been observed, see Wang, Yuzhong; Xie, Yaoming; Wei, Pingrong; King, R. Bruce; Schaefer, Iii; Schleyer, Paul v. R.; Robinson, Gregory H. (2008). "Carbene-Stabilized Diphosphorus". Journal of the American Chemical Society. 130 (45): 14970–1. doi:10.1021/ja807828t. PMID 18937460.
  13. ^ The equilibrium Cl2O6⇌2ClO3 is mentioned by Greenwood and Earnshaw, but it has been refuted, see Lopez, Maria; Juan E. Sicre (1990). "Physicochemical properties of chlorine oxides. 1. Composition, ultraviolet spectrum, and kinetics of the thermolysis of gaseous dichlorine hexoxide". J. Phys. Chem. 94 (9): 3860–3863. doi:10.1021/j100372a094., and Cl2O6 is actually chlorine(V,VII) oxide. However, ClO3 has been observed, see Grothe, Hinrich; Willner, Helge (1994). "Chlorine Trioxide: Spectroscopic Properties, Molecular Structure, and Photochemical Behavior". Angew. Chem. Int. Ed. 33 (14): 1482–1484. doi:10.1002/anie.199414821.
  14. ^ Ca(I) has been observed; see Krieck, Sven; Görls, Helmar; Westerhausen, Matthias (2010). "Mechanistic Elucidation of the Formation of the Inverse Ca(I) Sandwich Complex [(thf)3Ca(μ-C6H3-1,3,5-Ph3)Ca(thf)3] and Stability of Aryl-Substituted Phenylcalcium Complexes". Journal of the American Chemical Society. 132 (35): 12492–501. doi:10.1021/ja105534w. PMID 20718434.
  15. ^ Sc(I) has been observed; see Polly L. Arnold; F. Geoffrey; N. Cloke; Peter B. Hitchcock & John F. Nixon (1996). "The First Example of a Formal Scandium(I) Complex: Synthesis and Molecular Structure of a 22-Electron Scandium Triple Decker Incorporating the Novel 1,3,5-Triphosphabenzene Ring". J. Am. Chem. Soc. 118 (32): 7630–7631. doi:10.1021/ja961253o.
  16. ^ Sc(II) has been observed; see Woen, David H.; Chen, Guo P.; Ziller, Joseph W.; Boyle, Timothy J.; Furche, Filipp; Evans, William J. (January 2017). "Solution Synthesis, Structure, and CO Reduction Reactivity of a Scandium(II) Complex". Angewandte Chemie International Edition. 56 (8): 2050–2053. doi:10.1002/anie.201611758. PMID 28097771.
  17. ^ Sc(0) has been observed; see F. Geoffrey N. Cloke; Karl Khan & Robin N. Perutz (1991). "η-Arene complexes of scandium(0) and scandium(II)". J. Chem. Soc., Chem. Commun. (19): 1372–1373. doi:10.1039/C39910001372.
  18. ^ Ti(I) has been observed in [Ti(η6-1,3,5-C6H3iPr3)2][BAr4] (Ar = C6H5, p-C6H4F, 3,5-C6H3(CF3)2); see Calderazzo, Fausto; Ferri, Isabella; Pampaloni, Guido; Englert, Ulli; Green, Malcolm L. H. (1997). "Synthesis of [Ti(η6-1,3,5-C6H3iPr3)2][BAr4] (Ar = C6H5, p-C6H4F, 3,5-C6H3(CF3)2), the First Titanium(I) Derivatives". Organometallics. 16 (14): 3100–3101. doi:10.1021/om970155o.
  19. ^ a b c d e f g h i j k l Ti(−2), V(−3), Cr(−4), Co(−3), Zr(−2), Nb(−3), Mo(−4), Ru(−2), Rh(−3), Hf(−2), Ta(−3), and W(−4) occur in anionic binary metal carbonyls; see [3], p. 4 (in German); [4], pp. 97–100; [5], p. 239
  20. ^ Ti(−1) has been reported in [Ti(bipy)3], but was later shown to be Ti(+3); see Bowman, A. C.; England, J.; Sprouls, S.; Weihemüller, T.; Wieghardt, K. (2013). "Electronic structures of homoleptic [tris(2,2'-bipyridine)M]n complexes of the early transition metals (M = Sc, Y, Ti, Zr, Hf, V, Nb, Ta; n = 1+, 0, 1-, 2-, 3-): an experimental and density functional theoretical study". Inorganic Chemistry. 52 (4): 2242–56. doi:10.1021/ic302799s. PMID 23387926. However, Ti(−1) occurs in [Ti(η-C6H6] and [Ti(η-C6H5CH3)], see Bandy, J. A.; Berry, A.; Green, M. L. H.; Perutz, R. N.; Prout, K.; Verpeautz, J.-N. (1984). "Synthesis of anionic sandwich compounds: [Ti(η-C6H5R)2] and the crystal structure of [K(18-crown-6)(µ-H)Mo(η-C5H5)2]". Inorganic Chemistry. 52 (4): 729–731. doi:10.1039/C39840000729.
  21. ^ Jilek, Robert E.; Tripepi, Giovanna; Urnezius, Eugenijus; Brennessel, William W.; Young, Victor G., Jr.; Ellis, John E. (2007). "Zerovalent titanium–sulfur complexes. Novel dithiocarbamato derivatives of Ti(CO)6: [Ti(CO)4(S2CNR2)]". Chem. Commun. (25): 2639–2641. doi:10.1039/B700808B. PMID 17579764.
  22. ^ Fe(VII) has been observed in [FeO4]; see Lu, Jun-Bo; Jian, Jiwen; Huang, Wei; Lin, Hailu; Zhou, Mingfei (2016). "Experimental and theoretical identification of the Fe(VII) oxidation state in FeO4". Physical Chemistry Chemical Physics. 18 (45): 31125–31131. Bibcode:2016PCCP...1831125L. doi:10.1039/C6CP06753K. PMID 27812577.
  23. ^ Fe(VIII) has been reported; see Yurii D. Perfiliev; Virender K. Sharma (2008). "Higher Oxidation States of Iron in Solid State: Synthesis and Their Mössbauer Characterization – Ferrates – ACS Symposium Series (ACS Publications)". Platinum Metals Review. 48 (4): 157–158. doi:10.1595/147106704X10801. However, its existence has been disputed.
  24. ^ a b c d e f g h i j Fe(−4), Ru(−4), and Os(−4) have been observed in metal-rich compounds containing octahedral complexes [MIn6−xSnx]; Pt(−3) (as a dimeric anion [Pt–Pt]6−), Cu(−2), Zn(−2), Ag(−2), Cd(−2), Au(−2), and Hg(−2) have been observed (as dimeric and monomeric anions; dimeric ions were initially reported to be [T–T]2− for Zn, Cd, Hg, but later shown to be [T–T]4− for all these elements) in La2Pt2In, La2Cu2In, Ca5Au3, Ca5Ag3, Ca5Hg3, Sr5Cd3, Ca5Zn3(structure (AE2+)5(T–T)4−T2−⋅4e), Yb3Ag2, Ca5Au4, and Ca3Hg2; Au(–3) has been observed in ScAuSn and in other 18-electron half-Heusler compounds. See Changhoon Lee; Myung-Hwan Whangbo (2008). "Late transition metal anions acting as p-metal elements". Solid State Sciences. 10 (4): 444–449. Bibcode:2008SSSci..10..444K. doi:10.1016/j.solidstatesciences.2007.12.001. and Changhoon Lee; Myung-Hwan Whangbo; Jürgen Köhler (2010). "Analysis of Electronic Structures and Chemical Bonding of Metal-rich Compounds. 2. Presence of Dimer (T–T)4– and Isolated T2– Anions in the Polar Intermetallic Cr5B3-Type Compounds AE5T3 (AE = Ca, Sr; T = Au, Ag, Hg, Cd, Zn)". Zeitschrift für Anorganische und Allgemeine Chemie. 636 (1): 36–40. doi:10.1002/zaac.200900421.
  25. ^ Ni(−2) has been observed in Li2[Ni(1,5-COD)2], see Jonas, Klaus (1975). "Dilithium-Nickel-Olefin Complexes. Novel Bimetal Complexes Containing a Transition Metal and a Main Group Metal". Angew. Chem. Int. Ed. 14 (11): 752–753. doi:10.1002/anie.197507521. and Ellis, John E. (2006). "Adventures with Substances Containing Metals in Negative Oxidation States". Inorganic Chemistry. 45 (8): 3167–86. doi:10.1021/ic052110i. PMID 16602773.
  26. ^ Cu(0) has been observed in Cu(tris[2-(diisopropylphosphino)- phenyl]borane), see Moret, Marc-Etienne; Zhang, Limei; Peters, Jonas C. (2013). "A Polar Copper–Boron One-Electron σ-Bond". J. Am. Chem. Soc. 135 (10): 3792–3795. doi:10.1021/ja4006578. PMID 23418750.
  27. ^ Zn(I) has been observed in decamethyldizincocene (Zn25–C5Me5)2); see Resa, I.; Carmona, E.; Gutierrez-Puebla, E.; Monge, A. (2004). "Decamethyldizincocene, a Stable Compound of Zn(I) with a Zn-Zn Bond". Science. 305 (5687): 1136–8. Bibcode:2004Sci...305.1136R. doi:10.1126/science.1101356. PMID 15326350.
  28. ^ Ga(−2), Ga(−4), and Ga(−5) have been observed in the magnesium gallides MgGa, Mg2Ga, and Mg5Ga2, respectively; see Patrick Hofmann. "Colture. Ein Programm zur interaktiven Visualisierung von Festkörperstrukturen sowie Synthese, Struktur und Eigenschaften von binären und ternären Alkali- und Erdalkalimetallgalliden" (PDF) (in German). p. 72.
  29. ^ Ga(−3) has been observed in LaGa, see Dürr, Ines; Bauer, Britta; Röhr, Caroline (2011). "Lanthan-Triel/Tetrel-ide La(Al,Ga)x(Si,Ge)1-x. Experimentelle und theoretische Studien zur Stabilität intermetallischer 1:1-Phasen" (PDF). Z. Naturforsch. (in German). 66b: 1107–1121.
  30. ^ Ge(−1), Ge(−2), and Ge(−3) have been observed in germanides; see Holleman, Arnold F.; Wiberg, Egon; Wiberg, Nils (1995). "Germanium". Lehrbuch der Anorganischen Chemie (in German) (101 ed.). Walter de Gruyter. pp. 953–959. ISBN 978-3-11-012641-9.
  31. ^ As(I) has been observed in arsenic(I) iodide (AsI); see Ellis, Bobby D.; MacDonald, Charles L. B. (2004). "Stabilized Arsenic(I) Iodide: A Ready Source of Arsenic Iodide Fragments and a Useful Reagent for the Generation of Clusters". Inorganic Chemistry. 43 (19): 5981–6. doi:10.1021/ic049281s. PMID 15360247.
  32. ^ As(IV) has been observed in arsenic(IV) hydroxide (As(OH)4) and HAsO-; see Kläning, Ulrik K.; Bielski, Benon H. J.; Sehested, K. (1989). "Arsenic(IV). A pulse-radiolysis study". Inorganic Chemistry. 28 (14): 2717–24. doi:10.1021/ic00313a007.
  33. ^ Se(−1) has been observed in diselenides(2−) (Se22−).
  34. ^ Se(I) has been observed in selenium(I) chloride (Se2Cl2); see "Selenium: Selenium(I) chloride compound data". WebElements.com. Retrieved 2007-12-10.
  35. ^ Se(III) has been observed in Se2NBr3; see Lau, Carsten; Neumüller, Bernhard; Vyboishchikov, Sergei F.; Frenking, Gernot; Dehnicke, Kurt; Hiller, Wolfgang; Herker, Martin (1996). "Se2NBr3, Se2NCl5, Se2NCl6: New Nitride Halides of Selenium(III) and Selenium(IV)". Chemistry: A European Journal. 2 (11): 1393–1396. doi:10.1002/chem.19960021108.
  36. ^ Se(V) has been observed in SeO2- and HSeO2-; see Kläning, Ulrik K.; Sehested, K. (1986). "Selenium(V). A pulse radiolysis study". Inorganic Chemistry. 90 (21): 5460–4. doi:10.1021/j100412a112.
  37. ^ Sr(I) has been observed in strontium monofluoride (SrF); see P. Colarusso; Guo, B.; Zhang, K.-Q.; Bernath, P.F.; et al. (1996). "High-Resolution Infrared Emission Spectrum of Strontium Monofluoride" (PDF). Journal of Molecular Spectroscopy. 175 (1): 158–171. Bibcode:1996JMoSp.175..158C. doi:10.1006/jmsp.1996.0019. Archived from the original (PDF) on 2012-03-08.
  38. ^ Y(I) has been observed in yttrium(I) bromide (YBr); see "Yttrium: yttrium(I) bromide compound data". OpenMOPAC.net. Archived from the original on 2011-07-23. Retrieved 2007-12-10.
  39. ^ Y(II) has been observed in [(18-crown-6)K][(C5H4SiMe3)3Y]; see MacDonald, M. R.; Ziller, J. W.; Evans, W. J. (2011). "Synthesis of a Crystalline Molecular Complex of Y2+, [(18-crown-6)K][(C5H4SiMe3)3Y]". J. Am. Chem. Soc. 133 (40): 15914–17. doi:10.1021/ja207151y. PMID 21919538.
  40. ^ Zr(−1) has been reported in [Zr(bipy)3] (see Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 960. ISBN 978-0-08-037941-8. and Holleman, Arnold F.; Wiberg, Egon; Wiberg, Nils (1995). "Zirconium". Lehrbuch der Anorganischen Chemie (in German) (101 ed.). Walter de Gruyter. p. 1413. ISBN 978-3-11-012641-9.), but was later shown to be Zr(+4); see Bowman, A. C.; England, J.; Sprouls, S.; Weihemüller, T.; Wieghardt, K. (2013). "Electronic structures of homoleptic [tris(2,2'-bipyridine)M]n complexes of the early transition metals (M = Sc, Y, Ti, Zr, Hf, V, Nb, Ta; n = 1+, 0, 1-, 2-, 3-): an experimental and density functional theoretical study". Inorganic Chemistry. 52 (4): 2242–56. doi:10.1021/ic302799s. PMID 23387926.
  41. ^ a b Nb(I) and Ta(I) occur in CpNb(CO)4 and CpTa(CO)4, see Holleman, Arnold F.; Wiberg, Egon; Wiberg, Nils (1995). "Tantal". Lehrbuch der Anorganischen Chemie (in German) (101 ed.). Walter de Gruyter. p. 1430. ISBN 978-3-11-012641-9. and King, R. Bruce (1969). Transition-Metal Organometallic Chemistry: An Introduction. Academic Press. p. 11. ISBN 978-0-32-315996-8.
  42. ^ George, G.N.; Klein, S.I.; Nixon, J.F. (1984). "Electron paramagnetic resonance spectroscopic studies on the zero-valent rhodium complex [Rh(P(OPri)3)4] at X-and Q-band frequencies". Chemical Physics Letters. 108 (6): 627–630. Bibcode:1984CPL...108..627G. doi:10.1016/0009-2614(84)85069-1.
  43. ^ Pd(I) has been observed; see Crabtree, R. H. (2002). "CHEMISTRY: A New Oxidation State for Pd?". Science. 295 (5553): 288–289. doi:10.1126/science.1067921. PMID 11786632.
  44. ^ Pd(III) has been observed; see Powers, D. C.; Ritter, T. (2011). Palladium(III) in Synthesis and Catalysis (PDF). Top. Organomet. Chem. Topics in Organometallic Chemistry. 35. pp. 129–156. Bibcode:2011hoso.book..129P. doi:10.1007/978-3-642-17429-2_6. ISBN 978-3-642-17428-5. PMC 3066514. PMID 21461129. Archived from the original on June 12, 2013.CS1 maint: Unfit url (link)
  45. ^ The Ag ion has been observed in metal ammonia solutions: see Tran, N. E.; Lagowski, J. J. (2001). "Metal Ammonia Solutions: Solutions Containing Argentide Ions". Inorganic Chemistry. 40 (5): 1067–68. doi:10.1021/ic000333x.
  46. ^ Cd(I) has been observed in cadmium(I) tetrachloroaluminate (Cd2(AlCl4)2); see Holleman, Arnold F.; Wiberg, Egon; Wiberg, Nils (1985). "Cadmium". Lehrbuch der Anorganischen Chemie (in German) (91–100 ed.). Walter de Gruyter. pp. 1056–1057. ISBN 978-3-11-007511-3.
  47. ^ In(–5) has been observed in La3InGe, see Guloy, A. M.; Corbett, J. D. (1996). "Synthesis, Structure, and Bonding of Two Lanthanum Indium Germanides with Novel Structures and Properties". Inorganic Chemistry. 35 (9): 2616–22. doi:10.1021/ic951378e.
  48. ^ In(−2) has been observed in Na2In, see [6], p. 69.
  49. ^ Sn(−3) has been observed in [Sn2]6−, e.g. in (Ba2)4+(Mg4)8+Sn4−(Sn2)6−Sn2− (with square (Sn2−)n sheets), see Papoian, Garegin A.; Hoffmann, Roald (2000). "Hypervalent Bonding in One, Two, and Three Dimensions: Extending the Zintl–Klemm Concept to Nonclassical Electron-Rich Networks". Angew. Chem. Int. Ed. 2000 (39): 2408–2448. doi:10.1002/1521-3773(20000717)39:14<2408::aid-anie2408>3.0.co;2-u. Retrieved 2015-02-23.
  50. ^ Sn(I) and Sn(III) have been observed in organotin compounds
  51. ^ Sb(−2) has been observed in [Sb2]4−, e.g. in RbBa4[Sb2][Sb][O], see Boss, Michael; Petri, Denis; Pickhard, Frank; Zönnchen, Peter; Röhr, Caroline (2005). "Neue Barium-Antimonid-Oxide mit den Zintl-Ionen [Sb]3−, [Sb2]4− und 1[Sbn]n− / New Barium Antimonide Oxides containing Zintl Ions [Sb]3−, [Sb2]4− and 1[Sbn]n−". Zeitschrift für Anorganische und Allgemeine Chemie (in German). 631 (6–7): 1181–1190. doi:10.1002/zaac.200400546.
  52. ^ Sb(I) and Sb(II) have been observed in organoantimony compounds; for Sb(I), see Šimon, Petr; de Proft, Frank; Jambor, Roman; Růžička, Aleš; Dostál, Libor (2010). "Monomeric Organoantimony(I) and Organobismuth(I) Compounds Stabilized by an NCN Chelating Ligand: Syntheses and Structures". Angewandte Chemie International Edition. 49 (32): 5468–5471. doi:10.1002/anie.201002209. PMID 20602393.
  53. ^ Sb(IV) has been observed in [SbCl]2−
    , see Nobuyoshi Shinohara; Masaaki Ohsima (2000). "Production of Sb(IV) Chloro Complex by Flash Photolysis of the Corresponding Sb(III) and Sb(V) Complexes in CH3CN and CHCl3". Bulletin of the Chemical Society of Japan. 73 (7): 1599–1604. doi:10.1246/bcsj.73.1599.
  54. ^ Te(I) has been observed in tellurium iodide (TeI), see "Tellurium: tellurium iodide". WebElements.com. Retrieved 2015-02-23.
  55. ^ Te(III) has been observed in [Te(N(SiMe3)2)2]+, see Heinze, Thorsten; Roesky, Herbert W.; Pauer, Frank; Stalke, Dietmar; Sheldrick, George M. (1991). "Synthesis and Structure of the First Tellurium(III) Radical Cation". Angewandte Chemie International Edition. 30 (12): 1678. doi:10.1002/anie.199116771. Retrieved 2015-02-23.
  56. ^ Te(V) is mentioned by Greenwood and Earnshaw, but they do not give any example of a Te(V) compound. What was long thought to be ditellurium decafluoride (Te2F10) is actually bis(pentafluorotelluryl) oxide, F5TeOTeF5: see Watkins, P. M. (1974). "Ditellurium decafluoride - A Continuing Myth". Journal of Chemical Education. 51 (9): 520–521. Bibcode:1974JChEd..51..520W. doi:10.1021/ed051p520. However, Te(V) has been observed in HTeO-, TeO-, HTeO2-, and TeO3-; see Kläning, Ulrik K.; Sehested, K. (2001). "Tellurium(V). A Pulse Radiolysis Study". The Journal of Physical Chemistry A. 105 (27): 6637–45. Bibcode:2001JPCA..105.6637K. doi:10.1021/jp010577i.
  57. ^ I(IV) has been observed in iodine dioxide (IO2); see Pauling, Linus (1988). "Oxygen Compounds of Nonmetallic Elements". General Chemistry (3rd ed.). Dover Publications, Inc. p. 259. ISBN 978-0-486-65622-9.
  58. ^ I(VI) has been observed in IO3, IO42−, H5IO6, H2IO52−, H4IO62−, and HIO53−; see Kläning, Ulrik K.; Sehested, Knud; Wolff, Thomas (1981). "Laser flash photolysis and pulse radiolysis of iodate and periodate in aqueous solution. Properties of iodine(VI)". J. Chem. Soc., Faraday Trans. 1. 77 (7): 1707–18. doi:10.1039/F19817701707.
  59. ^ Xe(I) has been reported in xenon hexafluoroplatinate and xenon hexafluororhodate (see Pauling, Linus (1988). General Chemistry (3rd ed.). Dover Publications, Inc. p. 250. ISBN 978-0-486-65622-9.), however these compounds were later found to contain Xe(II).
  60. ^ Ba(I) has been observed in barium monofluoride (BaF); see P. Colarusso; Guo, B.; Zhang, K.-Q.; Bernath, P.F.; et al. (1995). "High-Resolution Fourier Transform Infrared Emission Spectrum of Barium Monofluoride" (PDF). Journal of Molecular Spectroscopy. 170: 59. Bibcode:1996JMoSp.175..158C. doi:10.1006/jmsp.1996.0019. Archived from the original (PDF) on 2005-03-10.
  61. ^ a b c d e f g h i j All lanthanides except Ce, Pm, Eu, Tm, Yb have been observed in the oxidation state 0 in bis(1,3,5-tri-t-butylbenzene) complexes, see Cloke, F. Geoffrey N. (1993). "Zero Oxidation State Compounds of Scandium, Yttrium, and the Lanthanides". Chem. Soc. Rev. 22: 17–24. doi:10.1039/CS9932200017.
  62. ^ La(I) has been observed in lanthanum monohydride (LaH); see Ram, R. S.; Bernath, P. F. (1996). "Fourier Transform Emission Spectroscopy of New Infrared Systems of LaH and LaD" (PDF). Journal of Molecular Spectroscopy. 104 (17): 6444. Bibcode:1996JChPh.104.6444R. doi:10.1063/1.471365. Archived from the original (PDF) on 2005-03-10.
  63. ^ Pr(I) has been observed in [PrB4]; see Chen, Xin; Chen, Teng-Teng; Li, Wang-Lu; Lu, Jun-Bo; Zhao, Li-Juan; Jian, Tian; Hu, Han-Shi; Wang, Lai-Sheng; Li, Jun (2018-12-13). "Lanthanides with Unusually Low Oxidation States in the PrB3 and PrB4 Boride Clusters". Inorganic Chemistry. 58 (1): 411–418. doi:10.1021/acs.inorgchem.8b02572. PMID 30543295.
  64. ^ Pr(V) has been observed in [PrO2]+; see Zhang, Qingnan; Hu, Shu-Xian; Qu, Hui; Su, Jing; Wang, Guanjun; Lu, Jun-Bo; Chen, Mohua; Zhou, Mingfei; Li, Jun (2016-06-06). "Pentavalent Lanthanide Compounds: Formation and Characterization of Praseodymium(V) Oxides". Angewandte Chemie International Edition. 55 (24): 6896–6900. doi:10.1002/anie.201602196. ISSN 1521-3773. PMID 27100273.
  65. ^ Hu, Shu-Xian; Jian, Jiwen; Su, Jing; Wu, Xuan; Li, Jun; Zhou, Mingfei (2017). "Pentavalent lanthanide nitride-oxides: NPrO and NPrO− complexes with N≡Pr triple bonds". Chemical Science. 8 (5): 4035–4043. doi:10.1039/C7SC00710H. ISSN 2041-6520. PMC 5434915. PMID 28580119.
  66. ^ Nd(IV) has been observed in unstable solid state compounds; see Holleman, Arnold Frederik; Wiberg, Egon (2001), Wiberg, Nils (ed.), Inorganic Chemistry, translated by Eagleson, Mary; Brewer, William, San Diego/Berlin: Academic Press/De Gruyter, ISBN 0-12-352651-5
  67. ^ a b c d e All the lanthanides (La–Lu) in the +2 oxidation state have been observed (except La, Gd, Lu) in dilute, solid solutions of dihalides of these elements in alkaline earth dihalides (see Holleman, Arnold Frederik; Wiberg, Egon (2001), Wiberg, Nils (ed.), Inorganic Chemistry, translated by Eagleson, Mary; Brewer, William, San Diego/Berlin: Academic Press/De Gruyter, ISBN 0-12-352651-5) and (except Pm) in organometallic molecular complexes, see Lanthanides Topple Assumptions and Meyer, G. (2014). "All the Lanthanides Do It and Even Uranium Does Oxidation State +2". Angewandte Chemie International Edition. 53 (14): 3550–51. doi:10.1002/anie.201311325. PMID 24616202.. Additionally, all the lanthanides (La–Lu) form dihydrides (LnH2), dicarbides (LnC2), monosulfides (LnS), monoselenides (LnSe), and monotellurides (LnTe), but for most elements these compounds have Ln3+ ions with electrons delocalized into conduction bands, e. g. Ln3+(H)2(e).
  68. ^ Dy(IV) has been observed in unstable solid state compounds; see Holleman, Arnold Frederik; Wiberg, Egon (2001), Wiberg, Nils (ed.), Inorganic Chemistry, translated by Eagleson, Mary; Brewer, William, San Diego/Berlin: Academic Press/De Gruyter, ISBN 0-12-352651-5
  69. ^ Hf(I) has been observed in hafnium monobromide (HfBr), see Marek, G.S.; Troyanov, S.I.; Tsirel'nikov, V.I. (1979). "Кристаллическое строение и термодинамические характеристики монобромидов циркония и гафния / Crystal structure and thermodynamic characteristics of monobromides of zirconium and hafnium". Журнал неорганической химии / Russian Journal of Inorganic Chemistry (in Russian). 24 (4): 890–893.
  70. ^ Os(−1) has been observed in Na[Os(CO)
    13
    ]
    ; see Krause, J.; Siriwardane, Upali; Salupo, Terese A.; Wermer, Joseph R.; Knoeppel, David W.; Shore, Sheldon G. (1993). "Preparation of [Os3(CO)11]2− and its reactions with Os3(CO)12; structures of [Et4N] [HOs3(CO)11] and H2OsS4(CO)". Journal of Organometallic Chemistry. 454: 263–271. doi:10.1016/0022-328X(93)83250-Y. and Carter, Willie J.; Kelland, John W.; Okrasinski, Stanley J.; Warner, Keith E.; Norton, Jack R. (1982). "Mononuclear hydrido alkyl carbonyl complexes of osmium and their polynuclear derivatives". Inorganic Chemistry. 21 (11): 3955–3960. doi:10.1021/ic00141a019.
  71. ^ Ir(−3) has been observed in Ir(CO)33−; see Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 1117. ISBN 978-0-08-037941-8.
  72. ^ Ir(VII) has been observed in [(η2-O2)IrO2]+; see C&EN: Iridium dressed to the nines.
  73. ^ Ir(VIII) has been observed in iridium tetroxide (IrO4); see Gong, Yu; Zhou, Mingfei; Kaupp, Martin; Riedel, Sebastian (2009). "Formation and Characterization of the Iridium Tetroxide Molecule with Iridium in the Oxidation State +VIII". Angewandte Chemie International Edition. 48 (42): 7879–7883. doi:10.1002/anie.200902733. PMID 19593837.
  74. ^ Ir(IX) has been observed in IrO+; see Wang, Guanjun; Zhou, Mingfei; Goettel, James T.; Schrobilgen, Gary G.; Su, Jing; Li, Jun; Schlöder, Tobias; Riedel, Sebastian (21 August 2014). "Identification of an iridium-containing compound with a formal oxidation state of IX". Nature. 514 (7523): 475–477. Bibcode:2014Natur.514..475W. doi:10.1038/nature13795. PMID 25341786.
  75. ^ Pt(−1) and Pt(−2) have been observed in the barium platinides Ba2Pt and BaPt, respectively: see Karpov, Andrey; Konuma, Mitsuharu; Jansen, Martin (2006). "An experimental proof for negative oxidation states of platinum: ESCA-measurements on barium platinides". Chemical Communications (8): 838–840. doi:10.1039/b514631c. PMID 16479284.
  76. ^ Pt(I) and Pt(III) have been observed in bimetallic and polymetallic species; see Kauffman, George B.; Thurner, Joseph J.; Zatko, David A. (1967). Ammonium Hexachloroplatinate(IV). Inorganic Syntheses. 9. pp. 182–185. doi:10.1002/9780470132401.ch51. ISBN 978-0-470-13240-1.
  77. ^ Hg(IV) has been reported in mercury(IV) fluoride (HgF4); see Xuefang Wang; Lester Andrews; Sebastian Riedel; Martin Kaupp (2007). "Mercury Is a Transition Metal: The First Experimental Evidence for HgF4". Angew. Chem. Int. Ed. 46 (44): 8371–8375. doi:10.1002/anie.200703710. PMID 17899620. However, it could not be confirmed by later experiments; see Is mercury a transition metal? Archived 2016-10-12 at the Wayback Machine
  78. ^ Tl(−5) has been observed in Na23K9Tl15.3, see Dong, Z.-C.; Corbett, J. D. (1996). "Na23K9Tl15.3: An Unusual Zintl Compound Containing Apparent Tl57−, Tl48−, Tl37−, and Tl5− Anions". Inorganic Chemistry. 35 (11): 3107–12. doi:10.1021/ic960014z.
  79. ^ Tl(−1) has been observed in caesium thallide (CsTl); see King, R. B.; Schleyer, R. (2004). "Theory and concepts in main-group cluster chemistry". In Driess, M.; Nöth, H. (eds.). Molecular clusters of the main group elements. Wiley-VCH, Chichester. p. 19. ISBN 978-3-527-61437-0.
  80. ^ Tl(+2) has been observed in tetrakis(hypersilyl)dithallium ([(Me3Si)Si]2Tl—Tl[Si(SiMe3)]2), see Sonja Henkel; Dr. Karl Wilhelm Klinkhammer; Dr. Wolfgang Schwarz (1994). "Tetrakis(hypersilyl)dithallium(Tl—Tl): A Divalent Thallium Compound". Angew. Chem. Int. Ed. 33 (6): 681–683. doi:10.1002/anie.199406811.
  81. ^ Pb(−2) has been observed in BaPb, see Ferro, Riccardo (2008). Nicholas C. Norman (ed.). Intermetallic Chemistry. Elsevier. p. 505. ISBN 978-0-08-044099-6. and Todorov, Iliya; Sevov, Slavi C. (2004). "Heavy-Metal Aromatic Rings: Cyclopentadienyl Anion Analogues Sn56− and Pb56− in the Zintl Phases Na8BaPb6, Na8BaSn6, and Na8EuSn6". Inorganic Chemistry. 43 (20): 6490–94. doi:10.1021/ic000333x.
  82. ^ Pb(+1) and Pb(+3) have been observed in organolead compounds, e.g. hexamethyldiplumbane Pb2(CH3)6; for Pb(I), see Siew-Peng Chia; Hong-Wei Xi; Yongxin Li; Kok Hwa Lim; Cheuk-Wai So (2013). "A Base-Stabilized Lead(I) Dimer and an Aromatic Plumbylidenide Anion". Angew. Chem. Int. Ed. 52 (24): 6298–6301. doi:10.1002/anie.201301954. PMID 23629949.
  83. ^ Bi(−2) and Bi(−1) occur in Zintl phases, e.g. (Ca2+)22[Bi4]4−([Bi2]4−)4[Bi3−]8; see Ponou, Siméon (2006). "Germanides, Germanide-Tungstate Double Salts and Substitution Effects in Zintl Phases". Technische Universität München. Lehrstuhl für Anorganische Chemie mit Schwerpunkt Neue Materialien. p. 68.
  84. ^ Bi(I) has been observed in bismuth monobromide (BiBr) and bismuth monoiodide (BiI); see Godfrey, S. M.; McAuliffe, C. A.; Mackie, A. G.; Pritchard, R. G. (1998). Nicholas C. Norman (ed.). Chemistry of arsenic, antimony, and bismuth. Springer. pp. 67–84. ISBN 978-0-7514-0389-3.
  85. ^ Bi(+2) has been observed in dibismuthines (R2Bi—BiR2), see Arthur J. Ashe III (1990). Thermochromic Distibines and Dibismuthines. Advances in Organometallic Chemistry. 30. pp. 77–97. doi:10.1016/S0065-3055(08)60499-2. ISBN 9780120311309.
  86. ^ Bi(IV) has been observed; see A. I. Aleksandrov, I. E. Makarov (1987). "Formation of Bi(II) and Bi(IV) in aqueous hydrochloric solutions of Bi(III)". Bulletin of the Academy of Sciences of the USSR, Division of Chemical Science. 36 (2): 217–220. doi:10.1007/BF00959349.
  87. ^ Po(V) has been observed in dioxidopolonium(1+) (PoO+); see Thayer, John S. (2010). "Relativistic Effects and the Chemistry of the Heavier Main Group Elements". Relativistic Methods for Chemists. p. 78. doi:10.1007/978-1-4020-9975-5_2. ISBN 978-1-4020-9974-8.
  88. ^ Rn(II) has been observed in radon difluoride (RnF2); see Stein, L. (1970). "Ionic Radon Solution". Science. 168 (3929): 362–4. Bibcode:1970Sci...168..362S. doi:10.1126/science.168.3929.362. PMID 17809133. and Kenneth S. Pitzer (1975). "Fluorides of radon and element 118". J. Chem. Soc., Chem. Commun. (18): 760b–761. doi:10.1039/C3975000760b.
  89. ^ Rn(IV) is reported by Greenwood and Earnshaw, but is not known to exist; see Sykes, A. G. (1998). "Recent Advances in Noble-Gas Chemistry". Advances in Inorganic Chemistry. 46. Academic Press. pp. 91–93. ISBN 978-0-12-023646-6. Retrieved 22 November 2012.
  90. ^ Rn(VI) is known in radon trioxide (RnO3); see Sykes, A. G. (1998). "Recent Advances in Noble-Gas Chemistry". Advances in Inorganic Chemistry. 46. Academic Press. pp. 91–93. ISBN 978-0-12-023646-6. Retrieved 22 November 2012.
  91. ^ Th(I) is known in thorium(I) bromide (ThBr); see Wickleder, Mathias S.; Fourest, Blandine; Dorhout, Peter K. (2006). "Thorium". In Morss, Lester R.; Edelstein, Norman M.; Fuger, Jean (eds.). The Chemistry of the Actinide and Transactinide Elements (PDF). 3 (3rd ed.). Dordrecht, the Netherlands: Springer. pp. 52–160. doi:10.1007/1-4020-3598-5_3. ISBN 978-1-4020-3555-5. Archived from the original (PDF) on 2016-03-07.
  92. ^ Th(II) and Th(III) are observed in [ThII{η5-C5H3(SiMe3)2}3] and [ThIII{η5-C5H3(SiMe3)2}3], see Langeslay, Ryan R.; Fieser, Megan E.; Ziller, Joseph W.; Furche, Philip; Evans, William J. (2015). "Synthesis, structure, and reactivity of crystalline molecular complexes of the {[C5H3(SiMe3)2]3Th}1− anion containing thorium in the formal +2 oxidation state". Chem. Sci. 6 (1): 517–521. doi:10.1039/C4SC03033H. PMC 5811171. PMID 29560172.
  93. ^ U(I) has been observed in uranium monofluoride (UF) and uranium monochloride (UCl), see Sykes, A. G. (1990). "Compounds of Thorium and Uranium". Advances in Inorganic Chemistry. 34. Academic Press. pp. 87–88. ISBN 978-0-12-023634-3. Retrieved 22 March 2015.
  94. ^ U(II) has been observed in [K(2.2.2-Cryptand)][(C5H4SiMe3)3U], see MacDonald, Matthew R.; Fieser, Megan E.; Bates, Jefferson E.; Ziller, Joseph W.; Furche, Filipp; Evans, William J. (2013). "Identification of the +2 Oxidation State for Uranium in a Crystalline Molecular Complex, [K(2.2.2-Cryptand)][(C5H4SiMe3)3U]". J. Am. Chem. Soc. 135 (36): 13310–13313. doi:10.1021/ja406791t. PMID 23984753.
  95. ^ Np(II) has been observed, see Dutkiewicz, Michał S.; Apostolidis, Christos; Walter, Olaf; Arnold, Polly L (2017). "Reduction chemistry of neptunium cyclopentadienide complexes: from structure to understanding". Chem. Sci. 8 (4): 2553–2561. doi:10.1039/C7SC00034K. PMC 5431675. PMID 28553487.
  96. ^ Pu(II) has been observed in {Pu[C5H3(SiMe3)2]3}−; see Windorff, Cory J.; Chen, Guo P; Cross, Justin N; Evans, William J.; Furche, Filipp; Gaunt, Andrew J.; Janicke, Michael T.; Kozimor, Stosh A.; Scott, Brian L. (2017). "Identification of the Formal +2 Oxidation State of Plutonium: Synthesis and Characterization of {PuII[C5H3(SiMe3)2]3}−". J. Am. Chem. Soc. 139 (11): 3970–3973. doi:10.1021/jacs.7b00706. PMID 28235179.
  97. ^ Am(VII) has been observed in AmO5-; see Americium, Das Periodensystem der Elemente für den Schulgebrauch (The periodic table of elements for schools) chemie-master.de (in German), Retrieved 28 November 2010 and Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 1265. ISBN 978-0-08-037941-8.
  98. ^ a b c Cm(V), Bk(V), and Cf(V) have been observed in BkO2+, CfO2+, CmO2(NO3)2, BkO2(NO3)2, and CfO2(NO3)2; see Dau, Phuong Diem; Vasiliu, Monica; Peterson, Kirk A; Dixon, David A; Gibsoon, John K (October 2017). "Remarkably High Stability of Late Actinide Dioxide Cations: Extending Chemistry to Pentavalent Berkelium and Californium". Chemistry - A European Journal (Submitted manuscript). 23 (68): 17369–17378. doi:10.1002/chem.201704193. PMID 29024093. and Kovács, Attila; Dau, Phuong D.; Marçalo, Joaquim; Gibson, John K. (2018). "Pentavalent Curium, Berkelium, and Californium in Nitrate Complexes: Extending Actinide Chemistry and Oxidation States". Inorg. Chem. 57 (15): 9453–9467. doi:10.1021/acs.inorgchem.8b01450. PMID 30040397.
  99. ^ Cm(VI) has been observed in curium trioxide (CmO3) and dioxidocurium(2+) (CmO2+); see Domanov, V. P.; Lobanov, Yu. V. (October 2011). "Formation of volatile curium(VI) trioxide CmO3". Radiochemistry. 53 (5): 453–6. doi:10.1134/S1066362211050018.
  100. ^ Cm(VIII) has been reported to possibly occur in curium tetroxide (CmO4); see Domanov, V. P. (January 2013). "Possibility of generation of octavalent curium in the gas phase in the form of volatile tetraoxide CmO4". Radiochemistry. 55 (1): 46–51. doi:10.1134/S1066362213010098. However, new experiments seem to indicate its nonexistence: Zaitsevskii, Andréi; Schwarz, W H Eugen (April 2014). "Structures and stability of AnO4 isomers, An = Pu, Am, and Cm: a relativistic density functional study". Physical Chemistry Chemical Physics. 2014 (16): 8997–9001. Bibcode:2014PCCP...16.8997Z. doi:10.1039/c4cp00235k. PMID 24695756.
  101. ^ Es(IV) is known in einsteinium(IV) fluoride (EsF4); see Kleinschmidt, P (1994). "Thermochemistry of the actinides". Journal of Alloys and Compounds. 213–214: 169–172. doi:10.1016/0925-8388(94)90898-2.
  102. ^ Db(V) has been observed in dubnium pentachloride (DbCl5); see H. W. Gäggeler (2007). "Gas Phase Chemistry of Superheavy Elements" (PDF). Paul Scherrer Institute. pp. 26–28. Archived from the original (PDF) on 2012-02-20.
  103. ^ Sg(VI) has been observed in seaborgium oxide hydroxide (SgO2(OH)2); see Huebener, S.; Taut, S.; Vahle, A.; Dressler, R.; Eichler, B.; Gäggeler, H. W.; Jost, D.T.; Piguet, D.; et al. (2001). "Physico-chemical characterization of seaborgium as oxide hydroxide" (PDF). Radiochim. Acta. 89 (11–12_2001): 737–741. doi:10.1524/ract.2001.89.11-12.737. Archived from the original (PDF) on 2014-10-25.
  104. ^ Sg(0) has been observed in seaborgium hexacarbonyl (Sg(CO)6); see Even, J.; Yakushev, A.; Dullmann, C. E.; Haba, H.; Asai, M.; Sato, T. K.; Brand, H.; Di Nitto, A.; Eichler, R.; Fan, F. L.; Hartmann, W.; Huang, M.; Jager, E.; Kaji, D.; Kanaya, J.; Kaneya, Y.; Khuyagbaatar, J.; Kindler, B.; Kratz, J. V.; Krier, J.; Kudou, Y.; Kurz, N.; Lommel, B.; Miyashita, S.; Morimoto, K.; Morita, K.; Murakami, M.; Nagame, Y.; Nitsche, H.; et al. (2014). "Synthesis and detection of a seaborgium carbonyl complex". Science. 345 (6203): 1491–3. Bibcode:2014Sci...345.1491E. doi:10.1126/science.1255720. PMID 25237098. (subscription required)
  105. ^ Bh(VII) has been observed in bohrium oxychloride (BhO3Cl); see "Gas chemical investigation of bohrium (Bh, element 107)" Archived 2008-02-28 at the Wayback Machine, Eichler et al., GSI Annual Report 2000. Retrieved on 2008-02-29
  106. ^ Hs(VIII) has been observed in hassium tetroxide (HsO4); see "Chemistry of Hassium" (PDF). Gesellschaft für Schwerionenforschung mbH. 2002. Retrieved 2007-01-31.
  107. ^ Cn(II) has been observed in copernicium selenide (CnSe); see "Annual Report 2015: Laboratory of Radiochemistry and Environmental Chemistry" (PDF). Paul Scherrer Institute. 2015. p. 3.
Template documentation[view] [edit] [history] [purge]

Documentation[edit]

Usage[edit]

In List of oxidation states of the elements
Per element:
{{List of oxidation states of the elements/row}}
{{List of oxidation states of the elements/row
|symbol=
|os=
|ref=
|note=
}}
  • |os= list options in this form:
|os=-5, -4, -3, -2,-1, 0, +1, +2, +3, +4, +5, +6, +7, +8, +9
|os=-5b, -4b, -3b, -2b, -1b, 0b, +1b, +2b, +3b, +4b, +5b, +6b, +7b, +8b, +9b (bold values = main oxidation states)
  • |ref= should have <ref>...</ref> tags (one set per reference).

List of oxidation states per {{infobox element}}[edit]

A check is going on in Template:List of oxidation states of the elements/datacheck.

Oxidation states data sets (WP:ELEMENTS talk)
Symbol Z Name complete main group val note
 
1 hydrogen H −1, +1 (an amphoteric oxide) −1, +1 1 I
2 helium He 0 0 18 0
3 lithium Li +1 (a strongly basic oxide) +1 1 I
4 beryllium Be +1,[1] +2 (an amphoteric oxide) +2 2 II
5 boron B −5, −1, +1, +2, +3[2][3] (a mildly acidic oxide) +3 13 III
6 carbon C −4, −3, −2, −1, 0, +1,[4] +2, +3,[5] +4[6] (a mildly acidic oxide) −4, +4 14 IV
7 nitrogen N −3, −2, −1, +1, +2, +3, +4, +5 (a strongly acidic oxide) −3, +3, +5 15 V
8 oxygen O −2, −1, +1, +2 −2 16 VI
9 fluorine F −1 (oxidizes oxygen) −1 17 VII
10 neon Ne 0 0 18 0
11 sodium Na −1, +1 (a strongly basic oxide) +1 1 I
12 magnesium Mg +1,[7] +2 (a strongly basic oxide) +2 2 II
13 aluminium Al −2, −1, +1,[8] +2,[9] +3 (an amphoteric oxide) +3 13 III
14 silicon Si −4, −3, −2, −1, +1,[10] +2, +3, +4 (an amphoteric oxide) −4, +4 14 IV
15 phosphorus P −3, −2, −1, +1,[11] +2, +3, +4, +5 (a mildly acidic oxide) −3, +3, +5 15 V
16 sulfur S −2, −1, +1, +2, +3, +4, +5, +6 (a strongly acidic oxide) −2, +2, +4, +6 16 VI
17 chlorine Cl −1, +1, +2, +3, +4, +5, +6, +7 (a strongly acidic oxide) −1, +1, +3, +5, +7 17 VII
18 argon Ar 0 0 18 0
19 potassium K −1, +1 (a strongly basic oxide) +1 1 I
20 calcium Ca +1,[12] +2 (a strongly basic oxide) +2 2 II
21 scandium Sc +1,[13] +2,[14] +3 (an amphoteric oxide) +3 3 III
22 titanium Ti −2, −1, +1, +2, +3, +4[15] (an amphoteric oxide) +4 4 IV
23 vanadium V −3, −1, +1, +2, +3, +4, +5 (an amphoteric oxide) +5 5 V
24 chromium Cr −4, −2, −1, +1, +2, +3, +4, +5, +6 (depending on the oxidation state, an acidic, basic, or amphoteric oxide) +3, +6 6 VI
25 manganese Mn −3, −2, −1, +1, +2, +3, +4, +5, +6, +7 (depending on the oxidation state, an acidic, basic, or amphoteric oxide) +2, +4, +7 7 VII
26 iron Fe −4, −2, −1, +1,[16] +2, +3, +4, +5,[17] +6, +7[18] (an amphoteric oxide) +2, +3, +6 8 VIII
27 cobalt Co −3, −1, +1, +2, +3, +4, +5[19] (an amphoteric oxide) +2, +3 9 VIII
28 nickel Ni −2, −1, +1,[20] +2, +3, +4[21] (a mildly basic oxide) +2 10 VIII
29 copper Cu −2, +1, +2, +3, +4 (a mildly basic oxide) +2 11 I
30 zinc Zn −2, 0, +1, +2 (an amphoteric oxide) +2 12 II
31 gallium Ga −5, −4, −2, −1, +1, +2, +3[22] (an amphoteric oxide) +3 13 III
32 germanium Ge −4 −3, −2, −1, 0, +1, +2, +3, +4 (an amphoteric oxide) −4, +2, +4 14 IV
33 arsenic As −3, −2, −1, +1,[23] +2, +3, +4, +5 (a mildly acidic oxide) −3, +3, +5 15 V
34 selenium Se −2, −1, +1,[24] +2, +3, +4, +5, +6 (a strongly acidic oxide) −2, +2, +4, +6 16 VI
35 bromine Br −1, +1, +3, +4, +5, +7 (a strongly acidic oxide) −1, +1, +3, +5 17 VII
36 krypton Kr 0, +1, +2 (rarely more than 0; oxide is unknown) 0 18 0
37 rubidium Rb −1, +1 (a strongly basic oxide) +1 1 I
38 strontium Sr +1,[25] +2 (a strongly basic oxide) +2 2 II
39 yttrium Y +1, +2, +3 (a weakly basic oxide) +3 3 III
40 zirconium Zr −2, +1,[26] +2, +3, +4 (an amphoteric oxide) +4 4 IV
41 niobium Nb −3, −1, +1, +2, +3, +4, +5 (a mildly acidic oxide) +5 5 V
42 molybdenum Mo −4, −2, −1, +1,[27] +2, +3, +4, +5, +6 (a strongly acidic oxide) +4, +6 6 VI
43 technetium Tc −3, +1,[28] +2, +3,[28] +4, +5, +6, +7 (a strongly acidic oxide) +4, +7 7 VII
44 ruthenium Ru −4, −2, +1,[29] +2, +3, +4, +5, +6, +7, +8 (a mildly acidic oxide) +3, +4 8 VIII
45 rhodium Rh −3, −1, +1,[30] +2, +3, +4, +5, +6 (an amphoteric oxide) +3 9 VIII
46 palladium Pd 0, +1, +2, +3, +4 (a mildly basic oxide) +2, +4 10 VIII
47 silver Ag −2, −1, +1, +2, +3 (an amphoteric oxide) +1 11 I
48 cadmium Cd −2, +1, +2 (a mildly basic oxide) +2 12 II
49 indium In −5, −2, −1, +1, +2, +3[31] (an amphoteric oxide) +3 13 III
50 tin Sn −4, −3, −2, −1, +1,[32] +2, +3,[33] +4 (an amphoteric oxide) −4, +2, +4 14 IV
51 antimony Sb −3, −2, −1, +1, +2, +3, +4, +5 (an amphoteric oxide) −3, +3, +5 15 V
52 tellurium Te −2, −1, +1, +2, +3, +4, +5, +6 (a mildly acidic oxide) −2, +2, +4, +6 16 VI
53 iodine I −1, +1, +3, +4, +5, +6, +7 (a strongly acidic oxide) −1, +1, +3, +5, +7 17 VII
54 xenon Xe 0, +1, +2, +4, +6, +8 (rarely more than 0; a weakly acidic oxide) 0 18 0
55 caesium Cs −1, +1[34] (a strongly basic oxide) +1 1 I
56 barium Ba +1, +2 (a strongly basic oxide) +2 2 II
57 lanthanum La +1, +2, +3 (a strongly basic oxide) +3 3 III
58 cerium Ce +1, +2, +3, +4 (a mildly basic oxide) +3, +4 n/a -
59 praseodymium Pr +1,[35] +2, +3, +4, +5 (a mildly basic oxide) +3 n/a -
60 neodymium Nd +2, +3, +4 (a mildly basic oxide) +3 n/a -
61 promethium Pm +2, +3 (a mildly basic oxide) +3 n/a -
62 samarium Sm +1, +2, +3, +4 (a mildly basic oxide) +3 n/a -
63 europium Eu +1, +2, +3 (a mildly basic oxide) +2, +3 n/a -
64 gadolinium Gd +1, +2, +3 (a mildly basic oxide) +3 n/a -
65 terbium Tb +1, +2, +3, +4 (a weakly basic oxide) +3 n/a -
66 dysprosium Dy +1, +2, +3, +4 (a weakly basic oxide) +3 n/a -
67 holmium Ho +1, +2, +3 (a basic oxide) +3 n/a -
68 erbium Er +1, +2, +3 (a basic oxide) +3 n/a -
69 thulium Tm +2, +3 (a basic oxide) +3 n/a -
70 ytterbium Yb +1, +2, +3 (a basic oxide) +3 n/a -
71 lutetium Lu +1, +2, +3 (a weakly basic oxide) +3 n/a -
72 hafnium Hf −2, +1, +2, +3, +4 (an amphoteric oxide) +4 4 IV
73 tantalum Ta −3, −1, +1, +2, +3, +4, +5 (a mildly acidic oxide) +5 5 V
74 tungsten W −4, −2, −1, 0, +1, +2, +3, +4, +5, +6 (a mildly acidic oxide) +4, +6 6 VI
75 rhenium Re −3, −1, 0, +1, +2, +3, +4, +5, +6, +7 (a mildly acidic oxide) +4 7 VII
76 osmium Os −4, −2, −1, 0, +1, +2, +3, +4, +5, +6, +7, +8 (a mildly acidic oxide) +4 8 VIII
77 iridium Ir −3, −1, 0, +1, +2, +3, +4, +5, +6, +7, +8, +9[36] +3, +4 9 VIII
78 platinum Pt −3, −2, −1, +1, +2, +3, +4, +5, +6 (a mildly basic oxide) +2, +4 10 VIII
79 gold Au −3, −2, −1, +1, +2, +3, +5 (an amphoteric oxide) +1, +3 11 I
80 mercury Hg −2 , +1 (mercurous), +2 (mercuric) (a mildly basic oxide) +2 12 II
81 thallium Tl −5,[37] −2, −1, +1, +2, +3 (a mildly basic oxide) +1, +3 13 III
82 lead Pb −4, −2, −1, +1, +2, +3, +4 (an amphoteric oxide) +2, +4 14 IV
83 bismuth Bi −3, −2, −1, +1, +2, +3, +4, +5 (a mildly acidic oxide) +3 15 V
84 polonium Po −2, +2, +4, +5,[38] +6 (an amphoteric oxide) −2, +2, +4 16 VI
85 astatine At −1, +1, +3, +5, +7[39] −1, +1 17 VII
86 radon Rn 0, +2, +6 0 18 0
87 francium Fr +1 (a strongly basic oxide) +1 1 I
88 radium Ra +2 (expected to have a strongly basic oxide) +2 2 II
89 actinium Ac +2, +3 (a strongly basic oxide) +3 3 III
90 thorium Th +1, +2, +3, +4 (a weakly basic oxide) +4 n/a -
91 protactinium Pa +2, +3, +4, +5 (a weakly basic oxide) +5 n/a -
92 uranium U +1, +2, +3,[40] +4, +5, +6 (a weakly basic oxide) +6 n/a -
93 neptunium Np +1, +2, +3, +4, +5, +6, +7 (an amphoteric oxide) +5 n/a -
94 plutonium Pu +1, +2, +3, +4, +5, +6, +7 (an amphoteric oxide) +4 n/a -
95 americium Am +2, +3, +4, +5, +6, +7 (an amphoteric oxide) +3 n/a -
96 curium Cm +2, +3, +4, +5,[41] +6[42] (an amphoteric oxide) +3 n/a -
97 berkelium Bk +2, +3, +4, +5[41] +3 n/a -
98 californium Cf +2, +3, +4, +5[43][41] +3 n/a -
99 einsteinium Es +2, +3, +4 +3 n/a -
100 fermium Fm +2, +3 +3 n/a -
101 mendelevium Md +2, +3 +3 n/a -
102 nobelium No +2, +3 +2 n/a -
103 lawrencium Lr +3 +3 n/a -
104 rutherfordium Rf (+2), (+3), +4[44][45][46] (parenthesized: prediction) (+3), +4 (parenthesized: prediction) 4 IV
105 dubnium Db (+3), (+4), +5[45][46] (parenthesized: prediction) +5 5 V
106 seaborgium Sg 0, (+3), (+4), (+5), +6[45][46] (parenthesized: prediction) (+4), +6 (parenthesized: prediction) 6 VI
107 bohrium Bh (+3), (+4), (+5), +7[45][46] (parenthesized: prediction) (+3), (+4), (+5), +7 (parenthesized: prediction) 7 VII
108 hassium Hs (+2), (+3), (+4), (+5), (+6), +8[45][47][46][48] (parenthesized: prediction) (+2), (+4), (+6), +8 (parenthesized: prediction) 8 VIII
109 meitnerium Mt (+1), (+3), (+4), (+6), (+8), (+9) (predicted)[45][49][50][46] (+1), (+3), (+6) (predicted) 9 VIII
110 darmstadtium Ds (0), (+2), (+4), (+6), (+8) (predicted)[45][46] (0), (+2), (+8) (predicted) 10 VIII
111 roentgenium Rg (−1), (+1), (+3), (+5) (predicted)[45][46] (+3) (predicted) 11 I
112 copernicium Cn 0, (+1), +2, (+4) (parenthesized: prediction)[45][51][46] 0, +2 12 II
113 nihonium Nh (−1), (+1), (+3), (+5) (predicted)[45][46][52] (+1), (+3) (predicted) 13 III
114 flerovium Fl (0), (+1), (+2), (+4), (+6) (predicted)[45][46][53] (+2) (predicted) 14 IV
115 moscovium Mc (+1), (+3) (predicted)[45][46] (+1), (+3) (predicted) 15 V
116 livermorium Lv (−2),[54] (+2), (+4) (predicted)[45] (+2) (predicted) 16 VI
117 tennessine Ts (−1), (+1), (+3), (+5) (predicted)[46][45] (+1), (+3) (predicted) 17 VII
118 oganesson Og (−1),[45] (0), (+1),[55] (+2),[56] (+4),[56] (+6)[45] (predicted) (+2), (+4) (predicted) 18 0
119 ununennium Uue (+1), (+3) (predicted)[45] (+1) (predicted) 1 I
120 unbinilium Ubn (+1),[57] (+2), (+4) (predicted)[45] (+2) (predicted) 2 II
121 unbiunium Ubu (+1), (+3) (predicted)[45][58] (+3) (predicted) 3 III
122 unbibium Ubb (+4) (predicted)[59] (+4) (predicted) -
123 unbitrium Ubt (+5) (predicted)[59] (+5) (predicted)
124 unbiquadium Ubq (+6) (predicted)[59] (+6) (predicted)
125 unbipentium Ubp (+1), (+6), (+7) (predicted)[59] (+6), (+7) (predicted)
126 unbihexium Ubh (+1), (+2), (+4), (+6), (+8) (predicted)[59] (+4), (+6), (+8) (predicted)

References[edit]

  1. ^ "Beryllium: Beryllium(I) Hydride compound data" (PDF). bernath.uwaterloo.ca. Retrieved 2007-12-10.
  2. ^ Zhang, K.Q.; Guo, B.; Braun, V.; Dulick, M.; Bernath, P.F. (1995). "Infrared Emission Spectroscopy of BF and AIF" (PDF). J. Molecular Spectroscopy. 170 (1): 82. Bibcode:1995JMoSp.170...82Z. doi:10.1006/jmsp.1995.1058.
  3. ^ Melanie Schroeder. "Eigenschaften von borreichen Boriden und Scandium-Aluminium-Oxid-Carbiden" (PDF) (in German). p. 139.
  4. ^ "Fourier Transform Spectroscopy of the Electronic Transition of the Jet-Cooled CCI Free Radical" (PDF). Retrieved 2007-12-06.
  5. ^ "Fourier Transform Spectroscopy of the System of CP" (PDF). Retrieved 2007-12-06.
  6. ^ "Carbon: Binary compounds". Retrieved 2007-12-06.
  7. ^ Bernath, P. F.; Black, J. H. & Brault, J. W. (1985). "The spectrum of magnesium hydride" (PDF). Astrophysical Journal. 298: 375. Bibcode:1985ApJ...298..375B. doi:10.1086/163620.
  8. ^ Dohmeier, C.; Loos, D.; Schnöckel, H. (1996). "Aluminum(I) and Gallium(I) Compounds: Syntheses, Structures, and Reactions". Angewandte Chemie International Edition. 35 (2): 129–149. doi:10.1002/anie.199601291.
  9. ^ D. C. Tyte (1964). "Red (B2Π–A2σ) Band System of Aluminium Monoxide". Nature. 202 (4930): 383. Bibcode:1964Natur.202..383T. doi:10.1038/202383a0.
  10. ^ Ram, R. S.; et al. (1998). "Fourier Transform Emission Spectroscopy of the A2D–X2P Transition of SiH and SiD" (PDF). J. Mol. Spectr. 190 (2): 341–352. doi:10.1006/jmsp.1998.7582. PMID 9668026.
  11. ^ Ellis, Bobby D.; MacDonald, Charles L. B. (2006). "Phosphorus(I) Iodide: A Versatile Metathesis Reagent for the Synthesis of Low Oxidation State Phosphorus Compounds". Inorganic Chemistry. 45 (17): 6864–74. doi:10.1021/ic060186o. PMID 16903744.
  12. ^ Krieck, Sven; Görls, Helmar; Westerhausen, Matthias (2010). "Mechanistic Elucidation of the Formation of the Inverse Ca(I) Sandwich Complex [(thf)3Ca(μ-C6H3-1,3,5-Ph3)Ca(thf)3] and Stability of Aryl-Substituted Phenylcalcium Complexes". Journal of the American Chemical Society. 132 (35): 12492–12501. doi:10.1021/ja105534w. PMID 20718434.
  13. ^ Smith, R. E. (1973). "Diatomic Hydride and Deuteride Spectra of the Second Row Transition Metals". Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. 332 (1588): 113–127. Bibcode:1973RSPSA.332..113S. doi:10.1098/rspa.1973.0015.
  14. ^ McGuire, Joseph C.; Kempter, Charles P. (1960). "Preparation and Properties of Scandium Dihydride". Journal of Chemical Physics. 33 (5): 1584–1585. Bibcode:1960JChPh..33.1584M. doi:10.1063/1.1731452.
  15. ^ Andersson, N.; et al. (2003). "Emission spectra of TiH and TiD near 938 nm" (PDF). J. Chem. Phys. 118 (8): 10543. Bibcode:2003JChPh.118.3543A. doi:10.1063/1.1539848.
  16. ^ Ram, R. S. & Bernath, P. F. (2003). "Fourier transform emission spectroscopy of the g4Δ-a4Δ system of FeCl" (PDF). Journal of Molecular Spectroscopy. 221 (2): 261. Bibcode:2003JMoSp.221..261R. doi:10.1016/S0022-2852(03)00225-X.
  17. ^ Demazeau, G.; Buffat, B.; Pouchard, M.; Hagenmuller, P. (1982). "Recent developments in the field of high oxidation states of transition elements in oxides stabilization of Six-coordinated Iron(V)". Zeitschrift für anorganische und allgemeine Chemie. 491: 60–66. doi:10.1002/zaac.19824910109.
  18. ^ Lu, J.; Jian, J.; Huang, W.; Lin, H.; Li, J; Zhou, M. (2016). "Experimental and theoretical identification of the Fe(VII) oxidation state in FeO4−". Physical Chemistry Chemical Physics. 18 (45): 31125–31131. Bibcode:2016PCCP...1831125L. doi:10.1039/C6CP06753K. PMID 27812577.
  19. ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. pp. 1117–1119. ISBN 978-0-08-037941-8.
  20. ^ Pfirrmann, Stefan; Limberg, Christian; Herwig, Christian; Stößer, Reinhard; Ziemer, Burkhard (2009). "A Dinuclear Nickel(I) Dinitrogen Complex and its Reduction in Single-Electron Steps". Angewandte Chemie International Edition. 48 (18): 3357–61. doi:10.1002/anie.200805862. PMID 19322853.
  21. ^ Carnes, Matthew; Buccella, Daniela; Chen, Judy Y.-C.; Ramirez, Arthur P.; Turro, Nicholas J.; Nuckolls, Colin; Steigerwald, Michael (2009). "A Stable Tetraalkyl Complex of Nickel(IV)". Angewandte Chemie International Edition. 48 (2): 290–4. doi:10.1002/anie.200804435. PMID 19021174.
  22. ^ Hofmann, Patrick (1997). Colture. Ein Programm zur interaktiven Visualisierung von Festkörperstrukturen sowie Synthese, Struktur und Eigenschaften von binären und ternären Alkali- und Erdalkalimetallgalliden (PDF) (in German). PhD Thesis, ETH Zurich. p. 72. doi:10.3929/ethz-a-001859893. ISBN 978-3728125972.
  23. ^ Ellis, Bobby D.; MacDonald, Charles L. B. (2004). "Stabilized Arsenic(I) Iodide: A Ready Source of Arsenic Iodide Fragments and a Useful Reagent for the Generation of Clusters". Inorganic Chemistry. 43 (19): 5981–6. doi:10.1021/ic049281s. PMID 15360247.
  24. ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
  25. ^ Colarusso, P.; Guo, B.; Zhang, K.-Q.; Bernath, P. F. (1996). "High-Resolution Infrared Emission Spectrum of Strontium Monofluoride" (PDF). J. Molecular Spectroscopy. 175 (1): 158. Bibcode:1996JMoSp.175..158C. doi:10.1006/jmsp.1996.0019.
  26. ^ "Zirconium: zirconium(I) fluoride compound data". OpenMOPAC.net. Retrieved 2007-12-10.
  27. ^ "Molybdenum: molybdenum(I) fluoride compound data". OpenMOPAC.net. Retrieved 2007-12-10.
  28. ^ a b "Technetium: technetium(III) iodide compound data". OpenMOPAC.net. Retrieved 2007-12-10.
  29. ^ "Ruthenium: ruthenium(I) fluoride compound data". OpenMOPAC.net. Retrieved 2007-12-10.
  30. ^ "Rhodium: rhodium(I) fluoride compound data". OpenMOPAC.net. Retrieved 2007-12-10.
  31. ^ Guloy, A. M.; Corbett, J. D. (1996). "Synthesis, Structure, and Bonding of Two Lanthanum Indium Germanides with Novel Structures and Properties". Inorganic Chemistry. 35 (9): 2616–22. doi:10.1021/ic951378e.
  32. ^ "HSn". NIST Chemistry WebBook. National Institute of Standards and Technology. Retrieved 23 January 2013.
  33. ^ "SnH3". NIST Chemistry WebBook. National Institure of Standards and Technology. Retrieved 23 January 2013.
  34. ^ Dye, J. L. (1979). "Compounds of Alkali Metal Anions". Angewandte Chemie International Edition. 18 (8): 587–598. doi:10.1002/anie.197905871.
  35. ^ Chen, Xin; et al. (2019-12-13). "Lanthanides with Unusually Low Oxidation States in the PrB3– and PrB4– Boride Clusters". Inorganic Chemistry. 58 (1): 411–418. doi:10.1021/acs.inorgchem.8b02572. PMID 30543295.
  36. ^ Wang, Guanjun; Zhou, Mingfei; Goettel, James T.; Schrobilgen, Gary G.; Su, Jing; Li, Jun; Schlöder, Tobias; Riedel, Sebastian (2014). "Identification of an iridium-containing compound with a formal oxidation state of IX". Nature. 514 (7523): 475–477. Bibcode:2014Natur.514..475W. doi:10.1038/nature13795. PMID 25341786.
  37. ^ Dong, Z.-C.; Corbett, J. D. (1996). "Na23K9Tl15.3: An Unusual Zintl Compound Containing Apparent Tl57−, Tl48−, Tl37−, and Tl5− Anions". Inorganic Chemistry. 35 (11): 3107–12. doi:10.1021/ic960014z.
  38. ^ Thayer, John S. (2010). "Relativistic Effects and the Chemistry of the Heavier Main Group Elements". Relativistic Methods for Chemists: 78. doi:10.1007/978-1-4020-9975-5_2. ISBN 978-1-4020-9974-8.
  39. ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 28. ISBN 978-0-08-037941-8.
  40. ^ Morss, L.R.; Edelstein, N.M.; Fuger, J., eds. (2006). The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Netherlands: Springer. ISBN 978-9048131464.
  41. ^ a b c Kovács, Attila; Dau, Phuong D.; Marçalo, Joaquim; Gibson, John K. (2018). "Pentavalent Curium, Berkelium, and Californium in Nitrate Complexes: Extending Actinide Chemistry and Oxidation States". Inorg. Chem. American Chemical Society. 57 (15): 9453–9467. doi:10.1021/acs.inorgchem.8b01450. PMID 30040397.
  42. ^ Domanov, V. P.; Lobanov, Yu. V. (October 2011). "Formation of volatile curium(VI) trioxide CmO3". Radiochemistry. SP MAIK Nauka/Interperiodica. 53 (5): 453–6. doi:10.1134/S1066362211050018.
  43. ^ Greenwood & Earnshaw 1997, p. 1265.
  44. ^ a b Chemical Data. Rutherfordium - Rf, Royal Chemical Society
  45. ^ a b c d e f g h i j k l m n o p q r s t Hoffman, Darleane C.; Lee, Diana M.; Pershina, Valeria (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean (eds.). The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. ISBN 978-1-4020-3555-5.
  46. ^ a b c d e f g h i j k l m n Fricke, Burkhard (1975). "Superheavy elements: a prediction of their chemical and physical properties". Recent Impact of Physics on Inorganic Chemistry. Structure and Bonding. 21: 89–144. doi:10.1007/BFb0116498. ISBN 978-3-540-07109-9. Retrieved 4 October 2013.
  47. ^ a b Emsley, John (2011). Nature's Building Blocks: An A-Z Guide to the Elements (New ed.). New York, NY: Oxford University Press. p. 215–7. ISBN 978-0-19-960563-7.
  48. ^ Düllmann, Christoph E. (31 October 2008). "Investigation of group 8 metallocenes @ TASCA" (PDF). 7th Workshop on Recoil Separator for Superheavy Element Chemistry TASCA 08. Gesellschaft für Schwerionenforschung. Retrieved 25 March 2013.
  49. ^ Ionova, G. V.; Ionova, I. S.; Mikhalko, V. K.; Gerasimova, G. A.; Kostrubov, Yu. N.; Suraeva, N. I. (2004). "Halides of Tetravalent Transactinides (Rf, Db, Sg, Bh, Hs, Mt, 110th Element): Physicochemical Properties". Russian Journal of Coordination Chemistry. 30 (5): 352. doi:10.1023/B:RUCO.0000026006.39497.82.
  50. ^ Himmel, Daniel; Knapp, Carsten; Patzschke, Michael; Riedel, Sebastian (2010). "How Far Can We Go? Quantum-Chemical Investigations of Oxidation State +IX". ChemPhysChem. 11 (4): 865–9. doi:10.1002/cphc.200900910. PMID 20127784.
  51. ^ Gäggeler, Heinz W.; Türler, Andreas (2013). "Gas Phase Chemistry of Superheavy Elements". The Chemistry of Superheavy Elements. Springer Science+Business Media. pp. 415–483. doi:10.1007/978-3-642-37466-1_8. Retrieved 2018-04-21.
  52. ^ Thayer, John S. (2010). "Relativistic Effects and the Chemistry of the Heavier Main Group Elements". In Barysz, Maria; Ishikawa, Yasuyuki (eds.). Relativistic Methods for Chemists. Springer. pp. 63–67. doi:10.1007/978-1-4020-9975-5_2. ISBN 978-1-4020-9974-8.
  53. ^ Schwerdtfeger, Peter; Seth, Michael (2002). "Relativistic Quantum Chemistry of the Superheavy Elements. Closed-Shell Element 114 as a Case Study" (PDF). Journal of Nuclear and Radiochemical Sciences. 3 (1): 133–136. doi:10.14494/jnrs2000.3.133. Retrieved 12 September 2014.
  54. ^ Thayer, John S. (2010). "Relativistic Effects and the Chemistry of the Heavier Main Group Elements". Relativistic Methods for Chemists: 83. doi:10.1007/978-1-4020-9975-5_2. ISBN 978-1-4020-9974-8.
  55. ^ Han, Young-Kyu; Bae, Cheolbeom; Son, Sang-Kil; Lee, Yoon Sup (2000). "Spin–orbit effects on the transactinide p-block element monohydrides MH (M=element 113–118)". Journal of Chemical Physics. 112 (6): 2684. Bibcode:2000JChPh.112.2684H. doi:10.1063/1.480842.
  56. ^ a b Kaldor, Uzi; Wilson, Stephen (2003). Theoretical Chemistry and Physics of Heavy and Superheavy Elements. Springer. p. 105. ISBN 978-1402013713. Retrieved 2008-01-18.
  57. ^ Thayer, John S. (2010). "Relativistic Effects and the Chemistry of the Heavier Main Group Elements". Relativistic Methods for Chemists: 84. doi:10.1007/978-1-4020-9975-5_2. ISBN 978-1-4020-9974-8.
  58. ^ Amador, Davi H. T.; de Oliveira, Heibbe C. B.; Sambrano, Julio R.; Gargano, Ricardo; de Macedo, Luiz Guilherme M. (12 September 2016). "4-Component correlated all-electron study on Eka-actinium Fluoride (E121F) including Gaunt interaction: Accurate analytical form, bonding and influence on rovibrational spectra". Chemical Physics Letters. 662: 169–175. Bibcode:2016CPL...662..169A. doi:10.1016/j.cplett.2016.09.025.
  59. ^ a b c d e Pyykkö, Pekka (2011). "A suggested periodic table up to Z ≤ 172, based on Dirac–Fock calculations on atoms and ions". Physical Chemistry Chemical Physics. 13 (1): 161–8. Bibcode:2011PCCP...13..161P. doi:10.1039/c0cp01575j. PMID 20967377.

See also[edit]