Template:Prime form

From Wikipedia, the free encyclopedia
Jump to: navigation, search

[0]

Template documentation[view] [edit] [history] [purge]

Usage[edit]

This template displays the prime form for a given pitch class set number.

  • {{Prime form|3-1}}

produces:

  • [0,1,2]


The default result is the Forte number[1] though the Rahn[2]/Morris[3]/Straus[4]/Starr[5] number may be requested through the "method" parameter (though this only affects five sets: [1]). Thus:

  • {{Prime form|method=Rahn|6-31}}
  • {{Prime form|method=Forte|6-31}} [or {{Prime form|6-31}}]

produces:

  • [0,1,4,5,7,9]
  • [0,1,3,5,8,9]


The reverse, the pitch class set number for a given prime form, is available through {{Prime form/reverse}}. Thus:

  • {{Prime form/reverse|[0,1,5,6,8]}} [or {{Prime form/reverse|[0,1,3,7,8]}}]

produces:

  • 5-20

See also[edit]

References[edit]

  1. ^ Forte, Allen (1973). The Structure of Atonal Music. Yale University Press. ISBN 9780300021202. Cited in Fobes, Christopher Anderson (2006). A Theoretical Investigation of Twelve-tone Rows, Harmonic Aggregates, and Non-twelve-tone Materials in the Late Music of Alberto Ginastera, p.14n4. ProQuest. ISBN 9780542778230.
  2. ^ Rahn, John (1980). Basic Atonal Theory, p.31-8 & 74-7. ISBN 9780028731605. Cited in Fobes (2006), p.14n4.
  3. ^ Morris, Robert D. (1991). Class Notes for Atonal Music Theory, p.39-42. ASIN B0006DHW9I [ISBN unspecified]. Cited in Fobes (2006), p.14n4.
  4. ^ Straus, Joseph N. (1990). Introduction to Post-Tonal Theory, p.31-4. ISBN 9780136866923. Cited in Fobes (2006), p.14n4.
  5. ^ Starr, Daniel (1978). "Sets, Invariance and Partitions", Journal of Music Theory 22, no. 1: 1-42. Cited in Brinkman, Alexander R. (1990). Pascal Programming for Music Research, p.628n5. ISBN 9780226075075.