Tetraethylammonium iodide

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Tetraethylammonium iodide
Tetraethylammonium iodide.svg
IUPAC name
N,N,N-Triethylethanaminium iodide
Other names
Tetamon iodide; Tetramon J; TEAI
ChemSpider 5990
Jmol interactive 3D Image
PubChem 6225
Molar mass 257.16 g·mol−1
Appearance Colorless or yellowish crystalline solid
Density 1.566 g/cm3[1]
Melting point 280 °C (536 °F; 553 K) (decomposes)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Tetraethylammonium iodide is a quaternary ammonium compound with the chemical formula C8H20N+I. It has been used as the source of tetraethylammonium ions in pharmacological and physiological studies, but is also used in organic chemical synthesis.



Tetraethylammonium iodide is commercially available, but can be prepared by the reaction between triethylamine and ethyl iodide.[2]


The crystal structure of tetraethylammonium iodide has been determined.[3]

Synthetic Applications[edit]

Examples include:


LD50: 35 mg/kg (mouse, i.p.); 56 mg/kg (mouse, i.v.)[citation needed]

See also[edit]


  1. ^ The Merck Index, 10th Ed., p.1316, Rahway: Merck & Co.
  2. ^ A. A. Vernon and J. L. Sheard (1948). "The solubility of tetraethylammonium iodide in benzene-ethylene dichloride mixtures." J. Am. Chem. Soc. 70 2035-2036.
  3. ^ E. Wait and H. M. Powell (1958). "The crystal and molecular structure of tetraethylammonium iodide." J. Chem. Soc. 1872-1875.
  4. ^ N. Hénaff and A. Whiting (2000). "Stereoselective formation of 1,2-diiodoalkenes and their application in the stereoselective synthesis of highly functionalised alkenes via Suzuki and Stille coupling reactions." J. Chem. Soc., Perkin 1 395-400.
  5. ^ T.Yoshino et al. (1977). "Synthetic studies with carbonates. Part 6. Syntheses of 2-hydroxyethyl derivatives by reactions of ethylene carbonate with carboxylic acids or heterocycles in the presence of tetraethylammonium halides or under autocatalytic conditions." J. Chem. Soc., Perkin 1 1266-1272.
  6. ^ G. Saikia and P. K. Iyer (2010)."Facile C-H alkylation in water: enabling defect-free materials for optoelectronic devices." J. Org. Chem. 75 2714-2717.