Tetraoctagonal tiling

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Tetraoctagonal tiling
Tetraoctagonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration (4.8)2
Schläfli symbol r{8,4} or
rr{8,8}
rr(4,4,4)
t0,1,2,3(∞,4,∞,4)
Wythoff symbol 2 | 8 4
Coxeter diagram CDel node.pngCDel 8.pngCDel node 1.pngCDel 4.pngCDel node.png or CDel node 1.pngCDel split1-84.pngCDel nodes.png
CDel node 1.pngCDel 8.pngCDel node.pngCDel 8.pngCDel node 1.png or CDel node.pngCDel split1-88.pngCDel nodes 11.png
CDel label4.pngCDel branch 11.pngCDel split2-44.pngCDel node.png
CDel labelinfin.pngCDel branch 11.pngCDel 4a4b.pngCDel branch 11.pngCDel labelinfin.png
Symmetry group [8,4], (*842)
[8,8], (*882)
[(4,4,4)], (*444)
[(∞,4,∞,4)], (*4242)
Dual Order-8-4 quasiregular rhombic tiling
Properties Vertex-transitive edge-transitive

In geometry, the tetraoctagonal tiling is a uniform tiling of the hyperbolic plane.

Constructions[edit]

There are for uniform constructions of this tiling, three of them as constructed by mirror removal from the [8,4] or (*842) orbifold symmetry. Removing the mirror between the order 2 and 4 points, [8,4,1+], gives [8,8], (*882). Removing the mirror between the order 2 and 8 points, [1+,8,4], gives [(4,4,4)], (*444). Removing both mirrors, [1+,8,4,1+], leaves a rectangular fundamental domain, [(∞,4,∞,4)], (*4242).

Four uniform constructions of 4.8.4.8
Name Tetra-octagonal tiling Rhombi-octaoctagonal tiling
Image Uniform tiling 84-t1.png Uniform tiling 88-t02.png Uniform tiling 444-t01.png 4242-uniform tiling-verf4848.png
Symmetry [8,4]
(*842)
CDel node c1.pngCDel 8.pngCDel node c2.pngCDel 4.pngCDel node c3.png
[8,8] = [8,4,1+]
(*882)
CDel node c1.pngCDel 8.pngCDel node c2.pngCDel 4.pngCDel node h0.png = CDel node c1.pngCDel split1-88.pngCDel nodeab c2.png
[(4,4,4)] = [1+,8,4]
(*444)
CDel node h0.pngCDel 8.pngCDel node c2.pngCDel 4.pngCDel node c3.png = CDel label4.pngCDel branch c2.pngCDel split2-44.pngCDel node c3.png
[(∞,4,∞,4)] = [1+,8,4,1+]
(*4242)
CDel node h0.pngCDel 8.pngCDel node c2.pngCDel 4.pngCDel node h0.png = CDel labelinfin.pngCDel branch c2.pngCDel 4a4b.pngCDel branch c2.pngCDel labelinfin.png or CDel nodeab c2.pngCDel 4a4b-cross.pngCDel nodeab c2.png
Schläfli r{8,4} rr{8,8}
=r{8,4}1/2
r(4,4,4)
=r{4,8}1/2
t0,1,2,3(∞,4,∞,4)
=r{8,4}1/4
Coxeter CDel node.pngCDel 8.pngCDel node 1.pngCDel 4.pngCDel node.png CDel node.pngCDel 8.pngCDel node 1.pngCDel 4.pngCDel node h0.png = CDel node.pngCDel split1-88.pngCDel nodes 11.png CDel node h0.pngCDel 8.pngCDel node 1.pngCDel 4.pngCDel node.png = CDel label4.pngCDel branch 11.pngCDel split2-44.pngCDel node.png CDel node h0.pngCDel 8.pngCDel node 1.pngCDel 4.pngCDel node h0.png = CDel labelinfin.pngCDel branch 11.pngCDel 4a4b.pngCDel branch 11.pngCDel labelinfin.png or CDel nodes 11.pngCDel 4a4b-cross.pngCDel nodes 11.png

Symmetry[edit]

The dual tiling has face configuration V4.8.4.8, and represents the fundamental domains of a quadrilateral kaleidoscope, orbifold (*4242), shown here. Adding a 2-fold gyration point at the center of each rhombi defines a (2*42) orbifold.

Ord84 qreg rhombic til.png H2chess 248e.png

Related polyhedra and tiling[edit]

See also[edit]

References[edit]

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

External links[edit]