Texas A&M Nuclear Science Center

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Triga Mark I Reactor[1]
Operating Institution Texas A&M University
Type Pool
Utilization 90 MW·d/yr
Power 1 MW (thermal)
Construction and Upkeep
Construction Cost US$1.5 million
Construction Began January 1, 1959
First Criticality January 1, 1962
Annual Upkeep Cost US$0.9 million
Staff 20
Operators 11
Technical Specifications
Max Thermal Flux 2.0×1013 n/(cm²·s)
Max Fast Flux 2.0×1011 n/(cm²·s)
Fuel Type uranium zirconium hydride
Cooling 100% natural convection
Neutron Moderator light water
zirconium hydride
Control Rods 6 rods, B4C
Cladding Material stainless steel

There are two nuclear research reactors that serve the Texas A&M University Nuclear Science Center. The older of the two is the AGN-201M model, a low-power teaching reactor. The newer reactor, the TRIGA Mark I, is focused strongly towards research.


This was the first reactor of the Nuclear Engineering program at Texas A&M, built in the 1950s. It was shut down 5 years ago and was recently started back up.[2] The reactor is of a negligible thermal power of 5 watts but achieves criticality, making it a critical assembly.

The AGN-201M type reactor is also employed at University of New Mexico and another AGN-201 type is used at Idaho State University.

TRIGA Mark I[edit]

This is the main reactor of the NSC, operation began in 1961. Tours are available to the public and it is reported that around 2,000 students participate in a tour each year. In 1999 there were 2,982 visitors.

The reactor is located in a stand-alone facility two and a half miles (4 km) away from the Texas A&M campus and close to an airfield.

Technical specifications[edit]

This reactor was part of the first line of TRIGA reactors but has a number of features that distinguishes it from the other dozens of TRIGA reactors in use today. It is a 1 megawatt pool-type reactor. It is designed for optimal irradiation of samples and is used to produce a number of radioisotopes for medical and industry applications.[3]

The reactor ran on 70% highly enriched uranium (HEU) until early 2006 when the core was refueled with low enriched uranium as a part of the National Nuclear Security Administration's (NNSA) Global Threat Reduction Initiative. This was a part of the Bush administration's efforts to minimize the terrorist threat posed by nuclear fuel in civilian applications around the world and constituted the first and only refueling of the reactor ever. In the decades that it had been in operation, the fuel had depleted its U-235 content from 70% to around 60%. The new fuel is somewhere under 20% enriched since it is classified as LEU.


The following is a very small sample of research projects underway in conjunction with the main reactor. Reference: NSC Homepage

Studying fire ant behavior[edit]

Working with faculty from the entomology department, neutron activation analysis has been underway on a number of samples from an ant colony to ascertain the behavior of sharing food. A sample is lowered into the reactor and irradiated with neutrons, thereby activating certain elements, which can then have their relative quantities accurately determined. With this information, entomologists can develop more effective ant poisons and control methods.


  1. ^ IAEA Database of Reactors http://www.iaea.org/worldatom/rrdb/, data from 2001-02-15
  2. ^ nuclear.tamu.edu/home/news/archive/index.php
  3. ^ Binney, S.E.; S.R. Reese; D.S. Pratt (February 22, 2000). "University Research Reactors: Contributing to the National Scientific and Engineering Infrastructure from 1953 to 2000 and Beyond". National Organization of Test, Research and Training Reactors. Retrieved 2007-04-07. 

External links[edit]