Textile manufacture during the Industrial Revolution

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Early industrialised region Wupper Valley, 1870 - painting by de:August von Wille

Textile manufacture during the Industrial Revolution in Britain was centred in south Lancashire and the towns on both sides of the Pennines. In Germany in the Wupper Valley, Ruhr Region and Upper Silesia. In the United States it was in New England. The four key drivers of the Industrial Revolution were textile manufacturing, iron founding, steam power and cheap labour.

Before the 18th century, the manufacture of cloth was performed by individual workers, in the premises in which they lived and goods were transported around the country by packhorses or by river navigations and contour-following canals that had been constructed in the early 18th century. In the mid-18th century, artisans were inventing ways to become more productive. Silk, wool, and fustian fabrics were being eclipsed by cotton which became the most important textile.

Innovations in carding and spinning enabled by advances in cast iron technology resulted in the creation of larger spinning mules and water frames. The machinery was housed in water-powered mills on streams. The need for more power stimulated the production of steam-powered beam engines, and rotative mill engines transmitting the power to line shafts on each floor of the mill. Surplus power capacity encouraged the construction of more sophisticated power looms working in weaving sheds. The scale of production in the mill towns round Manchester created a need for a commercial structure; for a cotton exchange and warehousing. The technology was used in woollen and worsted mills in the West Riding of Yorkshire and elsewhere.


Elements of the Industrial Revolution[edit]

The only surviving example of a Spinning Mule built by the inventor Samuel Crompton

The commencement of the Industrial Revolution is closely linked to a small number of innovations,[1] made in the second half of the 18th century:

These represent three 'leading sectors', in which there were key innovations, which allowed the economic take off by which the Industrial Revolution is usually defined. This is not to belittle many other inventions, particularly in the textile industry. Without earlier ones, such as the spinning jenny and flying shuttle in the textile industry and the smelting of pig iron with coke, these achievements might have been impossible. Later inventions such as the power loom and Richard Trevithick's high pressure steam engine were also important in the growing industrialisation of Britain. The application of steam engines to powering cotton mills and ironworks enabled these to be built in places that were most convenient because other resources were available, rather than where there was water to power a watermill.

Processing of cotton[edit]

Cotton Manufacturing Processes
FCIcon odo.svg
Bale Breaker Blowing Room
FCIcon orh.svg FCIcon h.svg FCIcon h1o.svg
Willowing FCIcon ovo.svg
FCIcon ovo.svg FCIcon ovo.svg
Breaker Scutcher Batting
FCIcon ovo.svg FCIcon ovo.svg
Finishing Scutcher Lapping
FCIcon ozh.svg FCIcon A.svg FCIcon h2o.svg
Carding Carding Room
FCIcon orh.svg FCIcon h.svg FCIcon h1o.svg
Silver Lap FCIcon ovo.svg
FCIcon ovo.svg FCIcon ovo.svg
Combing FCIcon ovo.svg
FCIcon ozh.svg FCIcon A.svg FCIcon h2o.svg
Drawing
FCIcon ovo.svg
Slubbing
FCIcon ovo.svg
Intermediate
FCIcon ovo.svg
Roving FCIcon h.svg Fine Roving
FCIcon orh.svg FCIcon h.svg FCIcon hzo.svg
Mule Spinning - Ring Spinning Spinning
FCIcon ozh.svg FCIcon A.svg FCIcon h2o.svg
FCIcon orh.svg FCIcon h.svg FCIcon hrh.svg FCIcon h.svg FCIcon h1o.svg
FCIcon ovo.svg Reeling FCIcon a.svg Doubling
FCIcon ovo.svg FCIcon ovo.svg FCIcon ovo.svg
Winding Bundling Bleaching
FCIcon orh.svg FCIcon h.svg FCIcon 1vo.svg FCIcon ovo.svg
Weaving shed FCIcon vvo.svg Winding
FCIcon ovo.svg FCIcon vvo.svg FCIcon ovo.svg
Beaming FCIcon vvo.svg Cabling
FCIcon ovo.svg FCIcon vvo.svg FCIcon ovo.svg
Warping FCIcon vvo.svg Gassing
FCIcon ovo.svg FCIcon vvo.svg FCIcon ovo.svg
Sizing/Slashing/Dressing FCIcon vvo.svg Spooling
FCIcon ovo.svg FCIcon vvo.svg FCIcon ovo.svg
Weaving FCIcon vvo.svg FCIcon ovo.svg
FCIcon odo.svg FCIcon ddo.svg FCIcon odo.svg
Cloth Yarn (Cheese)- - Bundle Sewing Thread

Cotton is the world's most important natural fibre. In the year 2007, the global yield was 25 million tons from 35 million hectares cultivated in more than 50 countries.[2]

There are five stages[3]

  • Cultivating and Harvesting
  • Preparatory Processes
  • Spinning
  • Weaving
  • Finishing

Industry and Invention[edit]

Before the 1760s, textile production was a cottage industry using mainly flax and wool. In a typical house, the girls and women could make enough yarn for the man's loom. The knowledge of textile production had existed for centuries, and the manual methods had been adequate to provide enough cloth. Cotton started to be imported and the balance of demand and supply was upset.

Two systems had developed for spinning: the Simple Wheel, which used an intermittent process and the more refined, Saxony wheel which drove a differential spindle and flyer with heck, in a continuous process. But neither of these wheels could produce enough thread for the looms after the invention by John Kay of the flying shuttle (which made the loom twice as productive). The first moves towards manufactories called mills were made in the spinning sector, and until the 1820s cotton, wool and worsted was spun in mills, and this yarn went to outworking weavers who continued to work in their own homes.

Early Inventions[edit]

During the second half of the 17th century, cotton goods were imported from India. Because of the competition with the wool and the linen industries, in 1700, the government placed a ban on imported cotton goods. Cotton had become popular, however, and a home-based cotton industry sprung up using the raw material imported from the colonies. Since much of the imported cotton came from New England, ports on the west coast of Britain, such as Liverpool, Bristol and Glasgow, became important in determining the sites of the cotton industry. Of course, the wool and linen manufacturers made sure that many restrictions were imposed on the import of cotton, but, as cotton had become fashionable, there was little they could do to stop the trend.

Lancashire became a centre for the cotton industry because the damp climate was better for spinning the yarn. Also, because the cotton thread was not strong enough, "fustian" wool or linen had to be used to make the warp for weaving. Lancashire was also a wool centre.

Two processes are necessary in the production of cotton goods from the raw material - spinning and weaving. At first, these were very much home-based, "cottage" industries. The spinning process, using the spinning wheel, was slow and the weavers were often held up by the lack of thread. In the 1760s, James Hargreaves improved thread production when he invented the Spinning Jenny. By the end of the decade, Richard Arkwright had developed the Water Frame. This invention had two important consequences. Firstly, it improved the quality of the thread, which meant that the cotton industry was no longer dependent on wool or linen to make the warp. Secondly, it took spinning away from the home-bases to specific areas where fast-flowing streams could provide water power for the larger machines. The west Pennines of Lancashire became the centre for the cotton industry. Not long after the invention of the Water Frame, Samuel Crompton combined the principals of the Spinning Jenny and the Water Frame to produce his Spinning Mule. This provided even tougher and finer cotton thread.

These inventions turned the tables, and it was the weavers who found it hard to keep up with the supply of thread. In 1770, John Kay's Flying Shuttle loom, which had been invented in 1733 and doubled a weaver's productivity and was widely in use. In conjunction with the Spinning Frame, this new loom was used in factories built in Derbyshire, Lancashire and Scotland.

The textile industry was also to benefit from other developments of the period. As early as 1691, Thomas Savery had made a vacuum steam engine. His design, which was unsafe, was improved by Thomas Newcomen in 1698. In 1765, James Watt further modified Newcomen's engine to design an external condenser steam engine. Watt continued to make improvements on his design, producing a separate condenser engine in 1774 and a rotating separate condensing engine in 1781. Watt formed a partnership with a businessman called Matthew Boulton, and together they manufactured steam engines which could be used by industry.

In 1785, the Reverend Edmund Cartwright invented the power loom. His invention was perfected over a ten year period by William Horrocks. Henry Cort replaced the early wooden machines with new machines made of iron. These new iron machines needed coal, rather than charcoal, to produce the steam to drive them.

In 1734 in Bury, Lancashire, John Kay invented the flying shuttle — one of the first of a series of inventions associated with the cotton industry. The flying shuttle increased the width of cotton cloth and speed of production of a single weaver at a loom.[4] Resistance by workers to the perceived threat to jobs delayed the widespread introduction of this technology, even though the higher rate of production generated an increased demand for spun cotton.

Shuttles

In 1738, Lewis Paul (one of the community of Huguenot weavers that had been driven out of France in a wave of religious persecution) settled in Birmingham and with John Wyatt, of that town, they patented the Roller Spinning machine and the flyer-and-bobbin system, for drawing wool to a more even thickness. Using two sets of rollers that travelled at different speeds yarn could be twisted and spun quickly and efficiently. This was later used in the first cotton spinning mill during the Industrial Revolution.

1742: Paul and Wyatt opened a mill in Birmingham which used their new rolling machine powered by donkey; this was not profitable and was soon closed.

1743: A factory opened in Northampton, fifty spindles turned on five of Paul and Wyatt's machines proving more successful than their first mill. This operated until 1764.

1748: Lewis Paul invented the hand driven carding machine. A coat of wire slips were placed around a card which was then wrapped around a cylinder. Lewis's invention was later developed and improved by Richard Arkwright and Samuel Crompton, although this came about under great suspicion after a fire at Daniel Bourn's factory in Leominster which specifically used Paul and Wyatt's spindles. Bourn produced a similar patent in the same year.

1758: Paul and Wyatt based in Birmingham improved their roller spinning machine and took out a second patent. Richard Arkwright later used this as the model for his water frame.

Start of the Revolution[edit]

In 1761, the Duke of Bridgewater's canal connected Manchester to the coal fields of Worsley and in 1762, Matthew Boulton opened the Soho Foundry engineering works in Handsworth, Birmingham. His partnership with Scottish engineer James Watt resulted, in 1775, in the commercial production of the more efficient Watt steam engine which used a separate condensor.

In 1764, James Hargreaves is credited as inventor of the spinning jenny which multiplied the spun thread production capacity of a single worker — initially eightfold and subsequently much further. Others[5] credit the original invention to Thomas Highs. Industrial unrest and a failure to patent the invention until 1770 forced Hargreaves from Blackburn, but his lack of protection of the idea allowed the concept to be exploited by others. As a result, there were over 20,000 Spinning Jennies in use by the time of his death. Again in 1764, Thorp Mill, the first water-powered cotton mill in the world was constructed at Royton, Lancashire, England. It was used for carding cotton.[6]

Arkwright's Cromford Mill.

Richard Arkwright used waterwheels to power textile machinery. His first spinning mill, Cromford Mill, Derbyshire, was built in 1771. It contained his invention the water frame. Frame is another name for the machinery for spinning or weaving. The water frame was developed from the spinning frame that Arkwright had developed with (a different) John Kay, from Warrington. The original design was again claimed by Thomas Highs, which he claimed he had patented in 1769.[7] Initial attempts at driving the frame had used horse power, but the innovation of using a waterwheel demanded a location with a ready supply of water, hence the mill at Cromford. This mill is preserved as part of the Derwent Valley Mills in some ways it was modelled on Matthew Boulton and John Fothergill's Soho Manufactory. Arkwright protected his investment from industrial rivals and potentially disruptive workers. He generated jobs and constructed accommodation for his workers, this led to a sizeable industrial community. Arkwright expanded his operations to other parts of the country.

Samuel Crompton of Bolton combined elements of the spinning jenny and water frame in 1779, creating the spinning mule. This mule produced a stronger thread than the water frame could. Thus in 1780, there were two viable hand operated spinning system that could be easily adapted to run by power of water.[8] As early mules were suitable for producing yarn for use in the manufacture of muslin, and which were known as the muslin wheel or the Hall i' th' Wood (pronounced Hall-ith-wood) wheel. As with Kay and Hargreaves, Crompton was not able to exploit his invention for his own profit, and died a pauper.

In 1783 a mill was built in Manchester at Shudehill, at the highest point in the city away from the river. Shudehill Mill was powered by a 30 ft diameter waterwheel. Two storage ponds were built, and the water from one passed from one to the other turning the wheel. A steam driven pump returned the water to the higher reservoir. The steam engine was of the atmospheric type.[8] An improvement devised by Joshua Wrigley, trialled in Chorlton-upon-Medlock used two Savery engines to supplement the river in driving on overshot waterwheel.[9]

In 1784, Edmund Cartwright invented the power loom,[4] and produced a prototype in the following year. His initial venture to exploit this technology failed, although his advances were recognised by others in the industry. Others such as Robert Grimshaw (whose factory was destroyed in 1790 as part of the growing reaction against the mechanization of the industry) and Austin [4] – developed the ideas further.

In the 1790s industrialists, such as John Marshall at Marshall's Mill in Leeds, started to work on ways to apply some of the techniques which had proved so successful in cotton to other materials, such as flax.

In 1803, William Radcliffe invented the dressing frame which was patented under the name of Thomas Johnson which enabled power looms to operate continuously.

Later developments[edit]

With the Cartwright Loom, the Spinning Mule and the Boulton & Watt steam engine, the pieces were in place to build a mechanised textile industry. From this point there were no new inventions, but a continuous improvement in technology as the mill-owner strove to reduce cost and improve quality. Developments in the transport infrastructure - the canals and, after 1831, the railways - facilitated the import of raw materials and export of finished cloth.

Firstly, the use of water power to drive mills was supplemented by steam driven water pumps, and then superseded completely by the steam engines. For example Samuel Greg joined his uncle's firm of textile merchants, and, on taking over the company in 1782, he sought out a site to establish a mill.Quarry Bank Mill was built on the River Bollin at Styal in Cheshire. It was initially powered by a water wheel, but installed steam engines in 1810.[10] In 1830, the average power of a mill engine was 48 hp, but Quarry Bank mill installed an new 100 hp water wheel.[11] This was to change in 1836, when Horrocks & Nuttall, Preston took delivery of 160 hp double engine. William Fairbairn addressed the problem of line-shafting and was responsible for improving the efficiency of the mill. In 1815 he replaced the wooden turning shafts that drove the machines at 50rpm, to wrought iron shafting working at 250 rpm, these were a third of the weight of the previous ones and absorbed less power.[11]

A Roberts loom in a weaving shed in 1835. Note the wrought iron shafting, fixed to the cast iron columns

Secondly, in 1830, using an 1822 patent, Richard Roberts manufactured the first loom with a cast iron frame, the Roberts Loom.[4] In 1842 James Bullough and William Kenworthy, made the Lancashire Loom . It is a semi automatic power loom. Although it is self-acting, it has to be stopped to recharge empty shuttles. It was the mainstay of the Lancashire cotton industry for a century, when the Northrop Loom invented in 1894 with an automatic weft replenishment function gained ascendancy.

Number of Looms in UK
Year 1803 1820 1829 1833 1857
Looms 2400 14650 55500 100000 250000

[12]


Roberts self-acting mule with quadrant gearing

Thirdly, also in 1830, Richard Roberts patented the first self-acting mule. Stalybridge mule spinners strike was in 1824,this stimulated research into the problem of applying power to the winding stroke of the mule.[13] The draw while spinning had been assisted by power, but the push of the wind had been done manually by the spinner, the mule could be operated by semiskilled labour. Before 1830, the spinner would operate a partially powered mule with a maximum of 400 spindles after, self-acting mules with up to 1300 spindles could be built.[14]

The savings that could be made with this technology were considerable. A worker spinning cotton at a hand-powered spinning wheel in the 18th century would take more than 50,000 hours to spin 100 lb of cotton; by the 1790s, the same quantity could be spun in 300 hours by mule, and with a self-acting mule it could be spun by one worker in just 135 hours.[15]

Workers[edit]

Working conditions in some early British textile factories were unfavorable relative to modern standards. Children, men, and women regularly volunteered for 68-hour work weeks. Factories often were not well ventilated and became very hot in the summer. Worker health and safety regulations were non-existent. Textile factories organized workers' lives much differently from craft production. Handloom weavers worked at their own pace, with their own tools, and within their own cottages. Factories set hours of work, and the machinery within them shaped the pace of work. Factories brought workers together within one building to work on machinery that they did not own. Factories also increased the division of labor. They narrowed the number and scope of tasks and included children and women within a common production process. As Manchester mill owner Friedrich Engels decried, the family structure itself was "turned upside down" as women's wages undercut men's, forcing men to "sit at home" and care for children while the wife worked long hours.[16] Factories flourished over manual craftsmanship because they had more efficient production output per worker, keeping prices down for the public, and they had much more consistent quality of product. The work-discipline was forcefully instilled upon the workforce by the factory owners,and he found that the working conditions were below the national average, and poverty levels were at an unprecedented high. Engels was appalled, and his research in Derby played a large role in his and Marx's book 'Das Kapital'.

At times, the workers rebelled against poor wages. The first major industrial action in Scotland was that of the Calton weavers in Glasgow, who went on strike for higher wages in the summer of 1787. In the ensuing disturbances, troops were called in to keep the peace and three of the weavers were killed.[17] There was continued unrest. In Manchester in May 1808, 15,000 protesters gathered on St George's Fields and were fired on by dragoons, with one man dying. A strike followed, but was eventually settled by a small wage increase.[18] In the general strike of 1842, half a million workers demanded the Charter and an end to pay cuts. Again, troops were called in to keep the peace, and the strike leaders were arrested, but some of the worker demands were met.[19]

The early textile factories employed a large share of children, but the share declined over time. In England and Scotland in 1788, two-thirds of the workers in 143 water-powered cotton mills were described as children. Sir Robert Peel, a mill owner turned reformer, promoted the 1802 Health and Morals of Apprentices Act, which was intended to prevent pauper children from working more than 12 hours a day in mills. Children had started in the mills at around the age of four, working as mule scavengers under the working machinery until they were eight, they progressed to working as little piecers which they did until they were 15. During this time they worked 14 to 16 hours a day, being beaten if they fell asleep.[20] The children were sent to the mills of Derbyshire, Yorkshire and Lancashire from the workhouses in London and other towns in the south of England. A well documented example was that of Litton Mill. Further legislation followed. By 1835, the share of the workforce under 18 years of age in cotton mills in England and Scotland had fallen to 43%. About half of workers in Manchester and Stockport cotton factories surveyed in 1818 and 1819 had begun work at under ten years of age.[21] Most of the adult workers in cotton factories in mid-19th-century Britain were workers who had begun work as child labourers. The growth of this experienced adult factory workforce helps to account for the shift away from child labour in textile factories.

A representative early spinning mill 1790–1825[edit]

Cromford Mill was an early Arkwright mill and was the model for future mills The site at Cromford had year-round supply of warm water from the sough which drained water from nearby lead mines, together with another brook. It was a five storey mill. Starting in 1772,the mills ran day and night with two 12 hour shifts.

It started with 200 workers, more than the locality could provide so Arkwright built housing for them nearby, one of the first manufacturers to do so. Most of the employees were women and children, the youngest being only 7 years old. Later, the minimum age was raised to 10 and the children were given 6 hours of education a week, so that they could do the record keeping their illiterate parents could not. Initially the first stage of the process was hand carding, but in 1775 he took out a second patent for a water-powered carding machine and this led to increased output. He was soon building further mills on this site and eventually employed 1,000 workers at Cromford. By the time of his death in 1792, he was the wealthiest untitled person in Britain.[22]

Gateway to Arkwright's Mill

The gate to Cromford Mill was shut at precisely 6am and 6pm every day and any worker who failed to get through it not only lost a day's pay but was fined another day's pay. In 1779, Arkwright installed a cannon, loaded with grapeshot, just inside the factory gate,[23] as a warning to would-be rioting textile workers, who had burned down another of his mills in Birkacre, Lancashire. The cannon was never used.

A representative mid-century spinning mill 1840[edit]

Brunswick Mill, Ancoats is a cotton spinning mill in Ancoats, Manchester, Greater Manchester. It was built around 1840, part of a group of mills built along the Ashton Canal, and at that time it was one of the country's largest mill. It was built round a quadrangle, a seven storey block faced the canal.[24] It was taken over by the Lancashire Cotton Corporation in the 1930s and passed to Courtaulds in 1964. Production finished in 1967.

The Brunswick mill was built around 1840 in one phase.[24] The main seven storey block that faces the Ashton Canal was used for spinning. The preparation was done on the second floor and the self-acting mules with 400 spindles were arranged transversely on the floors above on the upper floor. The wings contained some spinning and ancillary processes like winding. The mill is of fireproof construction and was built by David Bellhouse, but it is suspected that William Fairbairn was involved in the design. It was powered by a large double beam engine.[24]

In 1850 the mill had some 276 carding machines, and 77,000 mule spindles,[25] 20 drawing frames, fifty slubbing frames and eighty one roving frames.[26]


Export of technology[edit]

While profiting from expertise arriving from overseas (e.g. Louis Paul), Britain was very protective of home-grown technology. In particular, engineers with skills in constructing the textile mills and machinery were not permitted to emigrate — particularly to the fledgeling America.

Horse power (1780–1790)

The earliest cotton mills in the United States were horse powered. The first mill to use this method was the Beverly Cotton Manufactory, built in Beverly, Massachusetts. It was started August 18, 1788 by entrepreneur John Cabot and brothers. It was operated in joint by Moses Brown, Israel Thorndike, Joshua Fisher, Henry Higginson, and Deborah Higginson Cabot. The Salem Mercury reported that in April 1788 that the equipment for the mill was complete, consisting of a spinning jenny, a carding machine, warping machine, and other tools. That same year the mill's location was finalized and built in the rural outsets of North Beverly. The location had the presence of natural water, but it was cited the water was used for upkeep of the horses and cleaning of equipment, and not for mass-production.[27][28]

Much of the internal designs of the Beverly mill were hidden due to concerns of competitors stealing designs. The beginning efforts were all researched behind closed doors, even to the point that the owners of the mill set up milling equipment on their estates to experiment with the process. There were no published articles describing exactly how their process worked in detail. Additionally, the mill's horse powered technology was quickly dwarfed by new water-powered methods.[29][30]

Slater

Following the creation of the United States, an engineer who had worked as an apprentice to Arkwright's partner Jedediah Strutt evaded the ban. In 1789, Samuel Slater took his skills in designing and constructing factories to New England, and he was soon engaged in reproducing the textile mills that helped America with its own industrial revolution.

Local inventions spurred this on, and in 1793 Eli Whitney invented and patented the cotton gin, which sped up the processing of raw cotton by over 350 times.


Art and literature[edit]

  • William Blake Jerusalem - dark satanic mills.
  • Mrs Gaskell: Mary Barton(1848), North and South (1855)
  • Charles Sheeler
  • Charlotte Brontë: Shirley (1849)
  • Cynthia Harrod-Eagles wrote fictional accounts of the early days of factories and the events of the Industrial Revolution in The Maiden, The Flood Tide, The Tangled Thread, The Emperor, The Victory, The Regency, The Reckoning and The Devil's Horse, Volumes 8-13, 15 and 16 of The Morland Dynasty, The difficulties of getting cottage workers to accept the regimented and unwholesome life in factories as opposed to the relative freedom and flexibility of home-working is demonstrated in the earlier volumes mentioned as well as the concerns of some of the more philanthropically minded characters regarding the living and working conditions of the workers. The later volumes demonstrate that plans to improve the lot of factory hands, and the poor generally, were not welcomed by everybody – even by some essentially well-meaning people.

See also[edit]

References[edit]

Notes
  1. ^ The Industrial Revolution – Innovations
  2. ^ Majeed, A (January 19, 2009), Cotton and textiles — the challenges ahead, Dawn-the Internet edition, retrieved 2009-02-12 
  3. ^ "Machin processes", Spinning the Web (Manchester City Council: Libraries), retrieved 2009-01-29 
  4. ^ a b c Williams & Farnie 1992, p. 11
  5. ^ [1]
  6. ^ Mortimer, John (1897), Industrial Lancashire 
  7. ^ [2]: Press the 'Ingenious' button and use search key '10302171' for the patent)
  8. ^ a b Hills 1993, p. 43
  9. ^ Hills 1993, p. 44
  10. ^ Quarry Bank Mill in Cheshire still exists as a well preserved museum, having been in use from its construction in 1784 until 1959. It illustrates how the mill owners exploited child labour, taking orphans from nearby Manchester, but also shows that these children were housed, clothed, fed and provided with some education. This mill also shows the transition from water power to steam power, with steam engines to drive the looms being installed in 1810.
  11. ^ a b Hills 1993, p. 113
  12. ^ Hills 1993, p. 117
  13. ^ Hills 1993, p. 118
  14. ^ Williams & Farnie 1992, p. 9
  15. ^ Griffin, Emma (2010). A Short History of the British Industrial Revolution. Palgrave. p. 91. 
  16. ^ Cora Granata and Cheryl A. Koos, Modern Europe 1750 to the Present (Rowman & Littlefield Publishers, Inc., 2008) 31.
  17. ^ George MacGregor (1881). The history of Glasgow: from the earliest period to the present time. T. D. Morison. pp. 371–372. 
  18. ^ WORKERS: The long agony of the handloom weaver, Cotton Times, 2010, retrieved 2010-02-09 
  19. ^ "General Strike, 1842 Half a million workers demand the Charter and an end to pay cuts". Chartist Ancestors. Retrieved 2010-02-09. 
  20. ^ Rowland, David (1832), Children of the Revolution, Cotton Times, retrieved 2010-02-09 
  21. ^ [3]
  22. ^ Arkwright website
  23. ^ Cotton Times website
  24. ^ a b c Williams & Farnie 1992, pp. 154–156
  25. ^ "Graces guides, Brunswick Mill". Retrieved 2009-01-10. 
  26. ^ Parkinson-Bailey, John (2000). Manchester: An architectural history.. Manchester University Press. ISBN 978-0-7190-5606-2. Retrieved January 2009. 
  27. ^ Beverly Community History Cotton Mill, www.globalindex.com. URL accessed January 14, 2007.
  28. ^ The Worcester (Mass.) Spy. August 31, 1897, Wednesday. Page 2
  29. ^ The Beverly Cotton Manufactory: Or some new light on an early cotton mill. Robert W Lovett. Business Historical Society. Bulletin of the Business Historical Society pre.. Dec 1952; 26, 000004; ABI/INFORM(pg. 218)
  30. ^ "Made In Beverly-A History of Beverly Industry", by Daniel J. Hoisington. A publication of the Beverly Historic District Commission. 1989.
Bibliography
  • Copeland, Melvin Thomas. The cotton manufacturing industry of the United States (Harvard University Press, 1912) online
  • Cameron, Edward H. Samuel Slater, Father of American Manufactures (1960) scholarly biography
  • Conrad, Jr., James L. "'Drive That Branch': Samuel Slater, the Power Loom, and the Writing of America's Textile History," Technology and Culture, Vol. 36, No. 1 (Jan., 1995), pp. 1–28 in JSTOR
  • Griffin, Emma, A Short History of the British Industrial Revolution (Palgrave, 2010), pp. 86–104
  • Griffiths, T., Hunt, P.A., and O'Brien, P. K. "Inventive activity in the British textile industry", Journal of Economic History, 52 (1992), pp. 881–906.
  • Griffiths, Trevor; Hunt, Philip; O'Brien, Patrick. "Scottish, Irish, and imperial connections: Parliament, the three kingdoms, and the mechanization of cotton spinning in eighteenth-century Britain," Economic History Review, Aug 2008, Vol. 61 Issue 3, pp 625–650
  • Hills, Richard Leslie (1993), Power from Steam: A History of the Stationary Steam Engine (paperback ed.), Cambridge University Press, p. 244, ISBN 9780521458344, retrieved January 2009 
  • Miller, Ian; Wild, Chris (2007), A & G Murray and the Cotton Mills of Ancoats, Lancaster Imprints, ISBN 978-0-904220-46-9 
  • Tucker, Barbara M. "The Merchant, the Manufacturer, and the Factory Manager: The Case of Samuel Slater," Business History Review, Vol. 55, No. 3 (Autumn, 1981), pp. 297–313 in JSTOR
  • Tucker, Barbara M. Samuel Slater and the Origins of the American Textile Industry, 1790–1860 (1984)

External links[edit]