# Thermal velocity

Thermal velocity or thermal speed is a typical velocity of the thermal motion of particles that make up a gas, liquid, etc. Thus, indirectly, thermal velocity is a measure of temperature. Technically speaking, it is a measure of the width of the peak in the Maxwell–Boltzmann particle velocity distribution. Note that in the strictest sense thermal velocity is not a velocity, since velocity usually describes a vector rather than simply a scalar speed.

Since the thermal velocity is only a "typical" velocity, a number of different definitions can be and are used.

Taking ${\displaystyle k_{\text{B}}}$ to be the Boltzmann constant, ${\displaystyle T}$ the absolute temperature, and ${\displaystyle m}$ the mass of a particle, we can write the different thermal velocities:

## In one dimension

If ${\displaystyle v_{\text{th}}}$ is defined as the root mean square of the velocity in any one dimension (i.e. any single direction), then[1][2] ${\displaystyle v_{\text{th}}={\sqrt {\frac {k_{\text{B}}T}{m}}}.}$

If ${\displaystyle v_{\text{th}}}$ is defined as the mean of the magnitude of the velocity in any one dimension (i.e. any single direction), then ${\displaystyle v_{\text{th}}={\sqrt {\frac {2k_{\text{B}}T}{\pi m}}}.}$

## In three dimensions

If ${\displaystyle v_{\text{th}}}$ is defined as the most probable speed, then[2] ${\displaystyle v_{\text{th}}={\sqrt {\frac {2k_{\text{B}}T}{m}}}.}$

If ${\displaystyle v_{\text{th}}}$ is defined as the root mean square of the total velocity, then ${\displaystyle v_{\text{th}}={\sqrt {\frac {3k_{\text{B}}T}{m}}}.}$

If ${\displaystyle v_{\text{th}}}$ is defined as the mean of the magnitude of the velocity of the atoms or molecules, then ${\displaystyle v_{\text{th}}={\sqrt {\frac {8k_{\text{B}}T}{\pi m}}}.}$

All of these definitions are in the range ${\displaystyle v_{\text{th}}=(1.6\pm 0.2){\sqrt {\frac {k_{\text{B}}T}{m}}}.}$

## Thermal velocity at room temperature

At 20 °C (293.15 kelvins), the mean thermal velocity of common gasses in three dimensions is:[3]

Gas Thermal velocity
Hydrogen 1,754 m/s (5,750 ft/s)
Helium 1,245 m/s (4,080 ft/s)
Water vapor 585 m/s (1,920 ft/s)
Nitrogen 470 m/s (1,500 ft/s)
Air 464 m/s (1,520 ft/s)
Argon 394 m/s (1,290 ft/s)
Carbon dioxide 375 m/s (1,230 ft/s)

## References

1. ^ Baumjohann, Wolfgang; Treumann, Rudolf A. (2006). Basic Space Plasma Physics (Reprinted ed.). London: Imperial College Press. ISBN 978-1-86094-079-8.
2. ^ a b Gurnett, Donald A.; Bhattacharjee, Amitava (2017). Introduction to Plasma Physics: With Space, Laboratory and Astrophysical Applications (2nd ed.). Cambridge: Cambridge University Press. ISBN 978-1-107-02737-4.
3. ^ "Thermal velocity". www.pfeiffer-vacuum.com. Retrieved 2023-05-28.