Thermocompression bonding

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

Thermocompression bonding describes a wafer bonding technique and is also referred to as diffusion bonding, pressure joining, thermocompression welding or solid-state welding. Two metals, e.g. gold (Au)-gold (Au), are brought into atomic contact applying force and heat simultaneously.[1] The diffusion requires atomic contact between the surfaces due to the atomic motion. The atoms migrate from one crystal lattice to the other one based on crystal lattice vibration.[2] This atomic interaction sticks the interface together.[1] The diffusion process is described by the following three processes:

This method enables internal structure protecting device packages and direct electrical interconnect structures without additional steps beside the surface mounting process.[3]


The most established materials for thermocompression bonding are copper (Cu), gold (Au) and aluminium (Al)[1] because of their high diffusion rates.[4] In addition, aluminium and copper as relatively soft metals have good ductile properties.

The bonding with Al or Cu requires temperatures ≥ 400 °C to ensure sufficient hermetical sealing. Furthermore, aluminium needs extensive deposition and requires a high applied force to crack the surface oxide, as it is not able to penetrate through the oxide.

Using gold for diffusion, a temperature around 300 °C is needed to achieve a successful bond. Compared to Al or Cu, it does not form an oxide. This allows to skip a surface cleaning procedure before bonding.[1]

Copper has the disadvantage that the damascene process is very extensive.[5] Also it forms immediately a surface oxide that can be removed by formic acid vapor cleaning. The oxide removal conduces also as surface passivation.

The metal diffusion requires a good control of the CTE differences between the two wafers to prevent resulting stress.[1] Therefore, the temperature of both heaters needs to be matched and center-to-edge uniform. This results in a synchronized wafer expansion.[2]

Procedural steps[edit]


Oxidation and impurities in the metal films affect the diffusion reactions by reducing the diffusion rates. Therefore, clean deposition practices and bonding with oxide removal and re-oxidation prevention steps are applied.[6] The oxide layer removal can be realized by various oxide etch chemistry methods. Dry etching processes, i.e. formic acid vapor cleaning, are preferred based on the minimization of the immersion in fluids and the resulting etching of the passivation or the adhesion layer.[5] Using the CMP process, which is especially for Cu and Al required, creates a planarized surface with micro roughness around several nanometer and enables the achievement of void-free diffusion bonds.[7] Further, a surface treatment for organic removal, e.g. UV-ozone exposure, is possible.[8]

Methods, i.e. plasma surface pretreatment, provide an accelerated diffusion rate based on an increased surface contact.[2] Also the use of an ultra planarization step is considered to improve the bonding due to a reduction of material transport required for the diffusion. This improvement is based on a defined height Cu, Au and Sn.[9]


The metal films can be deposited by evaporation, sputtering or electroplating. Evaporation and sputtering, producing high quality films with limited impurities, are slow and hence used for micrometre and sub-micrometre layer thicknesses. The electroplating is commonly used for thicker films and needs careful monitoring and control of the film roughness and the layer purity.[5]

The gold film can also be deposited on a diffusion barrier film, i.e. oxide or nitride.[8] Also, an additional nano crystalline metal film, e.g. Ta, Cr, W, or Ti, can enhance the adhesion strength of the diffusion bond at decreased applied pressure and bonding temperature.[4]


The factors of the chosen temperature and applied pressure depend on the diffusion rate. The diffusion occurs between the crystal lattices by lattice vibration. Atoms can not leap over free space, i.e. contamination or vacancies. Beside the most rapid diffusion process (surface diffusion), the grain boundary and the bulk diffusion exist.[5]

Ti-Si bonding interface.[7]

Surface diffusion, also referred to as atomic diffusion, describes the process along the surface interface, when atoms move from surface to surface to free energy.

The grain boundary diffusion terms the free migration of atoms in free atomic lattice spaces. This is based on polycrystalline layers and its boundaries of incomplete matching of the atomic lattice and grains.

The diffusion through bulk crystal is the exchange of atoms or vacancies within the lattice that enables the mixing. The bulk diffusion starts at 30 to 50% of the materials melting point increasing exponentially with the temperature.[6]

To enable the diffusion process, a high force is applied to plastically deform the surface asperities in the film, i.e. reducing bow and warp of the metal.[5] Further, the applied force and its uniformity is important and depends on the wafer diameter and the metal density features. The high degree of force uniformity diminish the total force needed and alleviate the stress gradients and sensitivity to fragility.[2] The bonding temperature can be lowered using a higher applied pressure and vice versa, considering that high pressure increases the chances of damage to the structural material or the films.[8]

The bonding process itself takes place in a vacuum or forming gas environment, e.g. N2.[10] The pressure atmosphere supports the heat conduction and prevents thermal gradients vertically across the wafer and re-oxidation.[2] Based on the difficult control of thermal expansion differences between the two wafers, precision alignment and high quality fixtures are used.[10]

The bonding settings for the most established metals are following (for 200 mm wafers):[1]

Aluminium (Al)
bonding temperature can be from 400 to 450 °C with an applied force above 70 kN for 20 to 45 min
Gold (Au)
bonding temperature is between 260 and 450 °C with an applied force above 40 kN for 20 to 45 min
Copper (Cu)
bonding temperature lies around 380 to 450 °C with an applied force between 20 and 80 kN for 20 to 60 min


1. Thermocompression bonding is well established in the CMOS industry and realizes vertical integrated devices and production of wafer level packages with smaller form factors.[10] This bonding procedure is used to produce pressure sensors, accelerometers, gyroscopes and RF MEMS.[8]

2. Typically, thermocompression bonds are made with delivering heat and pressure to the mating surface by a hard faced bonding tool. Compliant bonding[11] is a unique method of forming this type of solid state bond between a gold lead and a gold surface since heat and pressure is transmitted through a compliant or deformable media. The use of the compliant medium ensures the physical integrity of the lead by controlling the extent of wire deformation. The process also allows one to bond a multiple number of gold wires of various dimensions simultaneously since the compliant media ensures contacting and deforming all the lead wires.

Technical specifications[edit]

  • Al
  • Au
  • Cu
  • Al: ≥ 400 °C
  • Au: ≥ 260 °C
  • Cu: ≥ 380 °C
  • localized heating
  • rapid cooling
  • good level of hermeticity
  • extensive preparation of Al, Cu
  • extensive deposition of Al, Cu
  • Nano-rod Cu layers
  • Ultra planarization technology

See also[edit]


  1. ^ a b c d e f Farrens, S. (2008). Latest Metal Technologies for 3D Integration and MEMS Wafer Level Bonding (Report). SUSS MicroTec Inc.
  2. ^ a b c d e Farrens, S. (2008). "Wafer-Bonding Technologies and Strategies for 3D ICs". In Tan, C. S.; Gutmann, R. J.; Reif, L. R. Wafer Level 3-D ICs Process Technology. Integrated Circuits and Systems. Springer US. pp. 49–85. doi:10.1007/978-0-387-76534-1.
  3. ^ Jung, E. and Ostmann, A. and Wiemer, M. and Kolesnik, I. and Hutter, M. (2003). "Soldered sealing process to assemble a protective cap for a MEMS CSP". Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS 2003. pp. 255–260. doi:10.1109/DTIP.2003.1287047.CS1 maint: Multiple names: authors list (link)
  4. ^ a b Shimatsu, T. & Uomoto, M. (2010). "Atomic diffusion bonding of wafers with thin nanocrystalline metal films". Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures. 28 (4). pp. 706–714. doi:10.1116/1.3437515.
  5. ^ a b c d e Farrens, Shari & Sood, Sumant (2008). "Wafer Level Packaging: Balancing Device Requirements and Materials Properties" (PDF). IMAPS. International Microelectronics and Packaging Society.
  6. ^ a b Farrens, S. (2008). "Metal Based Wafer Level Packaging". Global SMT & Packaging.
  7. ^ a b Wiemer, M. and Frömel, J. and Chenping, J. and Haubold, M. and Gessner, T. (2008). "Waferbond technologies and quality assessment". 58th Electronic Components and Technology Conference (ECTC). pp. 319–324. doi:10.1109/ECTC.2008.4549989.CS1 maint: Multiple names: authors list (link)
  8. ^ a b c d Tsau, C. H. and Spearing, S. M. and Schmidt, M. A. (2004). "Characterization of wafer-level thermocompression bonds". Journal of Microelectromechanical Systems. 13 (6). pp. 963–971. doi:10.1109/JMEMS.2004.838393.CS1 maint: Multiple names: authors list (link)
  9. ^ Reinert, W. & Funk, C. (2010). "Au-Au thermocompression bonding for 3D MEMS integration with planarized metal structures". International IEEE Workshop on Low Temperature Bonding for 3D Integration.
  10. ^ a b c Farrens, S. (2009). Metal Based Wafer Bonding Techniques for Wafer Level Packaging. MEMS Industry Group (Report). 4. SUSS MicroTec Inc.
  11. ^ A.Coucoulas, “Compliant Bonding” Proceedings 1970 IEEE 20th Electronic Components Conference, pp. 380-89, 1970.