Titanium aluminide

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

Titanium aluminide, TiAl, is an intermetallic chemical compound. It is lightweight and resistant to oxidation [1] and heat, however it suffers from low ductility. The density of γ-TiAl is about 4.0 g/cm³. It finds use in several applications including automobiles and aircraft. The development of TiAl based alloys began circa 1970. The alloys have been used in these applications only since about 2000.


Pole figures displaying crystallographic texture of gamma-TiAl in a rolled sheet of alpha2-gamma alloy, as measured by high energy X-rays.[2]

Titanium aluminide has three major intermetallic compounds: gamma TiAl, alpha 2-Ti3Al and TiAl3. Among the three, gamma TiAl has received the most interest and applications. Gamma TiAl has excellent mechanical properties and oxidation and corrosion resistance at elevated temperatures (over 600 degrees Celsius), which makes it a possible replacement for traditional Ni based superalloy components in aircraft turbine engines.

TiAl-based alloys have potential to increase the thrust-to-weight ratio in aircraft engines. This is especially the case with the engine's low-pressure turbine blades and the high-pressure compressor blades. These are traditionally made of Ni-based superalloy, which is nearly twice as dense as TiAl-based alloys. Several types of titanium aluminide alloys retain strength to 750 °C, which is at least 150 °C higher than the operating temperature limit of conventional titanium alloys.[3]

General Electric uses gamma TiAl for the low-pressure turbine blades on its GEnx engine, which powers the Boeing 787 and Boeing 747-8 aircraft. This was the first large-scale use of this material on a commercial jet engine[4] when it entered service in 2011[5]. The TiAl LPT blades are cast by Precision Castparts Corp. and Avio s.p.a.. Machining of the Stage 6, and Stage 7 LPT blades is performed by Moeller Manufacturing, Aerospace Division, in Wixom, Michigan, USA.[citation needed] An alternate pathway for production of the gamma TiAl blades for the GEnx and GE9x engines using Additive Manufacturing is being explored.[6]


  1. ^ Voskoboinikov, R.E.; Lumpkin, G.R.; Middleburgh, S.C. (2013). "Preferential formation of Al self-interstitial defects in γ-TiAl under irradiation". Intermetallics. 32: 230–232. doi:10.1016/j.intermet.2012.07.026.
  2. ^ Liss KD, Bartels A, Schreyer A, Clemens H (2003). "High energy X-rays: A tool for advanced bulk investigations in materials science and physics". Textures Microstruct. 35 (3/4): 219–52. doi:10.1080/07303300310001634952.
  3. ^ https://www.sciencedirect.com/topics/materials-science/titanium-aluminide
  4. ^ Bewlay BP, Nag S, Suzuki A, Weimer MJ (2016). "TiAl alloys in commercial aircraft engines". Materials at High Temperatures. 33 (4–5): 549–559. doi:10.1080/09603409.2016.1183068.
  5. ^ "GE Aviation Rolls Out its 1,000th GEnx Engine". AviationPros. 21 October 2015. Retrieved 10 August 2017.
  6. ^ http://3dprint.com/12262/ge-ebm-3d-printing/

External links[edit]