Personal care

From Wikipedia, the free encyclopedia
(Redirected from Toiletries)
Jump to navigation Jump to search

Personal care or toiletries are consumer products used in personal hygiene, personal grooming or for beautification.

Products[edit]

Swedish ad for toiletries, 1905/1906.

Personal care includes products as diverse as cleansing pads, colognes, cotton swabs, cotton pads, deodorant, eye liner, facial tissue, hair clippers, lip gloss, lipstick, lip balm, lotion, makeup, hand soap, facial cleanser, body wash, nail files, pomade, perfumes, razors, shaving cream, moisturizer, baby powder, toilet paper, toothpaste, facial treatments, wet wipes, towels, and shampoo.

Hotel application[edit]

Typical toiletries offered at many hotels include:

  • small bar of soap
  • disposable shower cap
  • small bottle of moisturizer
  • small bottles of shampoo and conditioner
  • toilet paper
  • box of facial tissue
  • face towels
  • disposable shoe polishing cloth
  • Toothpaste
  • Toothbrush
  • Cologne

Corporations[edit]

Some of the major corporations in the personal care industry are:

Other corporations, such as pharmacies (e.g. CVS/pharmacy, Walgreens) primarily retail in personal care rather than manufacture personal care products themselves.

Environmental impacts[edit]

The environmental effect of pharmaceuticals and personal care products (PPCPs) is being investigated since at least the 1990s. PPCPs include substances used by individuals for personal health or cosmetic reasons and the products used by agribusiness to boost growth or health of livestock. More than twenty million tons of PPCPs are produced every year.[1] The European Union has declared pharmaceutical residues with the potential of contamination of water and soil to be "priority substances".[3]

PPCPs have been detected in water bodies throughout the world. More research is needed to evaluate the risks of toxicity, persistence, and bioaccumulation, but the current state of research shows that personal care products impact over the environment and other species, such as coral reefs[2][3][4] and fish.[5][6] PPCPs encompass environmental persistent pharmaceutical pollutants (EPPPs) and are one type of persistent organic pollutants. They are not removed in conventional sewage treatment plants but require a fourth treatment stage which not many plants have.[1]

In 2022, the most comprehensive study of pharmaceutical pollution of the world's rivers found that it threatens "environmental and/or human health in more than a quarter of the studied locations". It investigated 1,052 sampling sites along 258 rivers in 104 countries, representing the river pollution of 470 million people. It found that "the most contaminated sites were in low- to middle-income countries and were associated with areas with poor wastewater and waste management infrastructure and pharmaceutical manufacturing" and lists the most frequently detected and concentrated pharmaceuticals.[7][8]

See also[edit]

References[edit]

  1. ^ a b Wang J, Wang S (November 2016). "Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: A review". Journal of Environmental Management. 182: 620–640. doi:10.1016/j.jenvman.2016.07.049. PMID 27552641.
  2. ^ Shinn H (2019). "The Effects of Ultraviolet Filters and Sunscreen on Corals and Aquatic Ecosystems: Bibliography". NOAA Central Library. doi:10.25923/hhrp-xq11.
  3. ^ Downs CA, Kramarsky-Winter E, Segal R, Fauth J, Knutson S, Bronstein O, et al. (February 2016). "Toxicopathological Effects of the Sunscreen UV Filter, Oxybenzone (Benzophenone-3), on Coral Planulae and Cultured Primary Cells and Its Environmental Contamination in Hawaii and the U.S. Virgin Islands". Archives of Environmental Contamination and Toxicology. 70 (2): 265–88. doi:10.1007/s00244-015-0227-7. PMID 26487337. S2CID 4243494.
  4. ^ Downs CA, Kramarsky-Winter E, Fauth JE, Segal R, Bronstein O, Jeger R, et al. (March 2014). "Toxicological effects of the sunscreen UV filter, benzophenone-2, on planulae and in vitro cells of the coral, Stylophora pistillata". Ecotoxicology. 23 (2): 175–91. doi:10.1007/s10646-013-1161-y. PMID 24352829. S2CID 1505199.
  5. ^ Niemuth NJ, Klaper RD (September 2015). "Emerging wastewater contaminant metformin causes intersex and reduced fecundity in fish". Chemosphere. 135: 38–45. Bibcode:2015Chmsp.135...38N. doi:10.1016/j.chemosphere.2015.03.060. PMID 25898388.
  6. ^ Larsson DG, Adolfsson-Erici M, Parkkonen J, Pettersson M, Berg AH, Olsson PE, Förlin L (1999-04-01). "Ethinyloestradiol — an undesired fish contraceptive?". Aquatic Toxicology. 45 (2): 91–97. doi:10.1016/S0166-445X(98)00112-X. ISSN 0166-445X.
  7. ^ "Pharmaceuticals in rivers threaten world health - study". BBC News. 15 February 2022. Retrieved 10 March 2022.
  8. ^ Wilkinson, John L.; Boxall, Alistair B. A.; et al. (14 February 2022). "Pharmaceutical pollution of the world's rivers". Proceedings of the National Academy of Sciences. 119 (8). doi:10.1073/pnas.2113947119. ISSN 0027-8424. PMID 35165193.