Topological insulator

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
An idealized band structure for a topological insulator. The Fermi level falls within the bulk band gap which is traversed by topologically-protected surface states.

A topological insulator is a material with non-trivial symmetry-protected topological order that behaves as an insulator in its interior but whose surface contains conducting states,[1] meaning that electrons can only move along the surface of the material. However, having a conducting surface is not unique to topological insulators, since ordinary band insulators can also support conductive surface states. What is special about topological insulators is that their surface states are symmetry-protected[2][3][4][5] by particle number conservation and time reversal symmetry.

In the bulk of a non-interacting topological insulator, the electronic band structure resembles an ordinary band insulator, with the Fermi level falling between the conduction and valence bands. On the surface of a topological insulator there are special states that fall within the bulk energy gap and allow surface metallic conduction. Carriers in these surface states have their spin locked at a right-angle to their momentum (spin-momentum locking). At a given energy the only other available electronic states have different spin, so the "U"-turn scattering is strongly suppressed and conduction on the surface is highly metallic. Non-interacting topological insulators are characterized by an index (known as Z2 topological invariants) similar to the genus in topology.[1]

The "protected" conducting states in the surface are required by time-reversal symmetry and the band structure of the material. The states cannot be removed by surface passivation if it does not break the time-reversal symmetry, which does not happen with potential and/or spin-orbit scattering, but happens in case of true magnetic impurities (e.g. spin-scattering).[6]

Prediction and discovery[edit]

Time-reversal symmetry-protected edge states were predicted in 1987[7] to occur in quantum wells (very thin layers) of mercury telluride sandwiched between cadmium telluride and were observed in 2007.[8] In 2007, they were predicted[9] to occur in three-dimensional bulk solids of binary compounds involving bismuth. A 3D "strong topological insulator" exists which cannot be reduced to multiple copies of the quantum spin Hall state.[10]

The first experimentally realized 3D topological insulator state (symmetry-protected surface states) was discovered in bismuth-antimony in 2008.[11] Shortly thereafter symmetry-protected surface states were also observed in pure antimony, bismuth selenide, bismuth telluride and antimony telluride using ARPES.[12] Many semiconductors within the large family of Heusler materials are now believed to exhibit topological surface states.[13][14] In some of these materials the Fermi level actually falls in either the conduction or valence bands due to naturally occurring defects, and must be pushed into the bulk gap by doping or gating.[15][16] The surface states of a 3D topological insulator is a new type of 2DEG (two-dimensional electron gas) where the electron's spin is locked to its linear momentum.[17]

Fully bulk insulating or intrinsic 3D topological insulator states exist in Bi-based materials. [18]

In 2014 it was shown that magnetic components, like the ones in spin-torque computer memory, can be manipulated by topological insulators.[19][20]

The effect is related to the metal-insulator transitions (Bose–Hubbard model).[citation needed]

Properties and applications[edit]

The spin-momentum locking[17] in the topological insulator allows symmetry-protected surface states to host Majorana particles if superconductivity is induced on the surface of 3D topological insulators via proximity effects.[21] (Note that Majorana zero-mode can also appear without topological insulators.[22]) The non-trivialness of topological insulators is encoded in the existence of a gas of helical Dirac fermions. Helical Dirac fermions, which behave like massless relativistic particles, have been observed in 3D topological insulators. Note that the gapless surface states of topological insulator differ from those in the Quantum Hall effect: the gapless surface states of topological insulator are symmetry-protected (i.e. not topological), while the gapless surface states in Quantum Hall effect are topological (i.e. robust against any local perturbations that can break all the symmetries). The Z2 topological invariants cannot be measured using traditional transport methods, such as spin Hall conductance, and the transport is not quantized by the Z2 invariants. An experimental method to measure Z2 topological invariants was demonstrated which provide a measure of the Z2 topological order.[23] (Note that the term Z2 topological order has also been used to describe the topological order with emergent Z2 gauge theory discovered in 1991.[24][25]) More generally (in what is known as the Ten-fold way) for each spatial dimensionality, each of the 10 Altland-Zirnbauer symmetry classes of random Hamiltonians labelled by the type of discrete symmetry (time-reversal symmetry, particle-hole symmetry, and chiral symmetry) has a corresponding group of topological invariants (either , or trivial) as described by the periodic table of topological invariants.[26]

The most promising applications of topological insulator are spintronic devices and dissipationless transistors for quantum computers based on the quantum spin Hall effect[8] and quantum anomalous Hall effect.[27] In addition, topological insulator materials have also found practical applications in advanced magnetoelectronic and optoelectronic devices.[28][29]

References[edit]

  1. ^ a b Kane, C. L.; Mele, E. J. (2005). "Z2 Topological Order and the Quantum Spin Hall Effect". Physical Review Letters. 95 (14): 146802. arXiv:cond-mat/0506581. Bibcode:2005PhRvL..95n6802K. doi:10.1103/PhysRevLett.95.146802. PMID 16241681.
  2. ^ Zheng-Cheng Gu and Xiao-Gang Wen Tensor-Entanglement-Filtering Renormalization Approach and Symmetry-Protected Topological Order Phys. Rev. B80, 155131 (2009).
  3. ^ Pollmann, F.; Berg, E.; Turner, Ari M.; Oshikawa, Masaki (2012). "Symmetry protection of topological phases in one-dimensional quantum spin systems". Phys. Rev. B. 85 (7): 075125. arXiv:0909.4059. Bibcode:2012PhRvB..85g5125P. doi:10.1103/PhysRevB.85.075125.
  4. ^ Chen, Xie; Gu, Zheng-Cheng; Wen, Xiao-Gang (2011). "Classification of Gapped Symmetric Phases in 1D Spin Systems". Phys. Rev. B. 83 (3): 035107. arXiv:1008.3745. Bibcode:2011PhRvB..83c5107C. doi:10.1103/physrevb.83.035107.
  5. ^ Chen, Xie; Liu, Zheng-Xin; Wen, Xiao-Gang (2011). "2D symmetry-protected topological orders and their protected gapless edge excitations". Phys. Rev. B. 84 (23): 235141. arXiv:1106.4752. Bibcode:2011PhRvB..84w5141C. doi:10.1103/physrevb.84.235141.
  6. ^ Th. Guhr, A. Müller-Groening, H.A. Weidenmüller: Random Matrix Theories in Quantum Physics: Common Concepts. In: Physics Reports, volume 299, 1998, p. 189–425.
  7. ^ Pankratov, O.A.; Pakhomov, S.V.; Volkov, B.A. (January 1987). "Supersymmetry in heterojunctions: Band-inverting contact on the basis of Pb1-xSnxTe and Hg1-xCdxTe". Solid State Communications. 61 (2): 93–96. Bibcode:1987SSCom..61...93P. doi:10.1016/0038-1098(87)90934-3.
  8. ^ a b König, Markus; Wiedmann, Steffen; Brüne, Christoph; Roth, Andreas; Buhmann, Hartmut; Molenkamp, Laurens W.; Qi, Xiao-Liang; Zhang, Shou-Cheng (2007-11-02). "Quantum Spin Hall Insulator State in HgTe Quantum Wells". Science. 318 (5851): 766–770. arXiv:0710.0582. Bibcode:2007Sci...318..766K. doi:10.1126/science.1148047. PMID 17885096. Retrieved 2010-03-25.
  9. ^ Fu, Liang; C. L. Kane (2007-07-02). "Topological insulators with inversion symmetry". Physical Review B. 76 (4): 045302. arXiv:cond-mat/0611341. Bibcode:2007PhRvB..76d5302F. doi:10.1103/PhysRevB.76.045302. Shuichi Murakami (2007). "Phase transition between the quantum spin Hall and insulator phases in 3D: emergence of a topological gapless phase". New Journal of Physics. 9 (9): 356. arXiv:0710.0930. Bibcode:2007NJPh....9..356M. doi:10.1088/1367-2630/9/9/356. ISSN 1367-2630. Retrieved 2010-03-26.
  10. ^ Kane, C. L.; Moore, J. E. (2011). "Topological Insulators" (PDF). Physics World. 24: 32.
  11. ^ Hsieh, David; Dong Qian; Andrew L. Wray; Yuqi Xia; Yusan Hor; Robert Cava; M. Zahid Hasan (2008). "A Topological Dirac insulator in a quantum spin Hall phase". Nature. 452 (9): 970–974. arXiv:0902.1356. Bibcode:2008Natur.452..970H. doi:10.1038/nature06843. PMID 18432240.
  12. ^ Hasan, M. Zahid; Kane, Charles L. (2010). "Topological Insulators". Reviews of Modern Physics. 82 (4): 3045–3067. arXiv:1002.3895. Bibcode:2010RvMP...82.3045H. doi:10.1103/RevModPhys.82.3045.
  13. ^ Chadov, Stanislav; Xiao-Liang Qi; Jürgen Kübler; Gerhard H. Fecher; Claudia Felser; Shou-Cheng Zhang (July 2010). "Tunable multifunctional topological insulators in ternary Heusler compounds". Nature Materials. 9 (7): 541–545. arXiv:1003.0193. Bibcode:2010NatMa...9..541C. doi:10.1038/nmat2770. PMID 20512154. Retrieved 2010-08-05.
  14. ^ Lin, Hsin; L. Andrew Wray; Yuqi Xia; Suyang Xu; Shuang Jia; Robert J. Cava; Arun Bansil; M. Zahid Hasan (July 2010). "Half-Heusler ternary compounds as new multifunctional experimental platforms for topological quantum phenomena". Nat Mater. 9 (7): 546–549. arXiv:1003.0155. Bibcode:2010NatMa...9..546L. doi:10.1038/nmat2771. ISSN 1476-1122. PMID 20512153.
  15. ^ Hsieh, D.; Y. Xia; D. Qian; L. Wray; F. Meier; J. H. Dil; J. Osterwalder; L. Patthey; A. V. Fedorov; H. Lin; A. Bansil; D. Grauer; Y. S. Hor; R. J. Cava; M. Z. Hasan (2009). "Observation of Time-Reversal-Protected Single-Dirac-Cone Topological-Insulator States in Bi2Te3 and Sb2Te3". Physical Review Letters. 103 (14): 146401. Bibcode:2009PhRvL.103n6401H. doi:10.1103/PhysRevLett.103.146401. PMID 19905585.
  16. ^ Noh, H.-J.; H. Koh; S.-J. Oh; J.-H. Park; H.-D. Kim; J. D. Rameau; T. Valla; T. E. Kidd; P. D. Johnson; Y. Hu; Q. Li (2008). "Spin-orbit interaction effect in the electronic structure of Bi2Te3 observed by angle-resolved photoemission spectroscopy". EPL. 81 (5): 57006. arXiv:0803.0052. Bibcode:2008EL.....8157006N. doi:10.1209/0295-5075/81/57006. Retrieved 2010-04-25.
  17. ^ a b Hsieh, D.; Xia, Y.; Qian, D.; Wray, L.; Dil, J. H.; Meier, F.; Osterwalder, J.; Patthey, L.; Checkelsky, J. G.; Ong, N. P.; Fedorov, A. V.; Lin, H.; Bansil, A.; Grauer, D.; Hor, Y. S.; Cava, R. J.; Hasan, M. Z. (2009). "A tunable topological insulator in the spin helical Dirac transport regime". Nature. 460 (7259): 1101–1105. arXiv:1001.1590. Bibcode:2009Natur.460.1101H. doi:10.1038/nature08234. PMID 19620959.
  18. ^ Xu, Y; Miotkowski,I.; Liu, C., Tian,J.; Nam, H.; Alidoust,N.; Hu,J.; Shih, C.-K; Hasan, M.Z.; Chen, Y.-P. (2014). "Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator". Nature Physics. 10 (12): 956–963. arXiv:1409.3778. Bibcode:2014NatPh..10..956X. doi:10.1038/nphys3140.
  19. ^ "Weird materials could make faster computers". Science News. Retrieved 2014-07-23.
  20. ^ Mellnik, A. R; Lee, J. S; Richardella, A; Grab, J. L; Mintun, P. J; Fischer, M. H; Vaezi, A; Manchon, A; Kim, E. -A; Samarth, N; Ralph, D. C (2014). "Spin-transfer torque generated by a topological insulator". Nature. 511 (7510): 449–451. arXiv:1402.1124. Bibcode:2014Natur.511..449M. doi:10.1038/nature13534. PMID 25056062.
  21. ^ Fu, L.; C. L. Kane (2008). "Superconducting Proximity Effect and Majorana Fermions at the Surface of a Topological Insulator". Phys. Rev. Lett. 100 (9): 096407. arXiv:0707.1692. Bibcode:2008PhRvL.100i6407F. doi:10.1103/PhysRevLett.100.096407. PMID 18352737.
  22. ^ Potter, Andrew C.; Lee, Patrick A. (23 March 2012). "Topological superconductivity and Majorana fermions in metallic surface states". Physical Review B. American Physical Society (APS). 85 (9). doi:10.1103/physrevb.85.094516. ISSN 1098-0121.
  23. ^ Hsieh, D.; D. Hsieh; Y. Xia; L. Wray; D. Qian; A. Pal; J. H. Dil; F. Meier; J. Osterwalder; C. L. Kane; G. Bihlmayer; Y. S. Hor; R. J. Cava; M. Z. Hasan (2009). "Observation of Unconventional Quantum Spin Textures in Topological Insulators". Science. 323 (5916): 919–922. arXiv:0902.2617. Bibcode:2009Sci...323..919H. doi:10.1126/science.1167733. PMID 19213915. Retrieved 5 August 2010.
  24. ^ Read, N.; Sachdev, Subir (1991). "Large-N expansion for frustrated quantum antiferromagnets". Phys. Rev. Lett. 66 (13): 1773–1776. Bibcode:1991PhRvL..66.1773R. doi:10.1103/physrevlett.66.1773. PMID 10043303.
  25. ^ Wen, Xiao-Gang (1991). "Mean Field Theory of Spin Liquid States with Finite Energy Gaps". Phys. Rev. B. 44 (6): 2664–2672. Bibcode:1991PhRvB..44.2664W. doi:10.1103/physrevb.44.2664.
  26. ^ Chiu, C.; J. Teo; A. Schnyder; S. Ryu (2016). "Classification of topological quantum matter with symmetries". Rev. Mod. Phys. 88 (35005): 035005. arXiv:1505.03535. Bibcode:2016RvMP...88c5005C. doi:10.1103/RevModPhys.88.035005.
  27. ^ Chang, Cui-Zu; Zhang, Jinsong; Feng, Xiao; Shen, Jie; Zhang, Zuocheng; Guo, Minghua; Li, Kang; Ou, Yunbo; Wei, Pang (2013-04-12). "Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator". Science. 340 (6129): 167–170. arXiv:1605.08829. Bibcode:2013Sci...340..167C. doi:10.1126/science.1234414. ISSN 0036-8075. PMID 23493424.
  28. ^ Yue, Zengji; Cai, Boyuan; Wang, Lan; Wang, Xiaolin; Gu, Min (2016-03-01). "Intrinsically core-shell plasmonic dielectric nanostructures with ultrahigh refractive index". Science Advances. 2 (3): e1501536. Bibcode:2016SciA....2E1536Y. doi:10.1126/sciadv.1501536. ISSN 2375-2548. PMC 4820380. PMID 27051869.
  29. ^ Yue, Zengji; Xue, Gaolei; Liu, Juan; Wang, Yongtian; Gu, Min (2017-05-18). "Nanometric holograms based on a topological insulator material". Nature Communications. 8: ncomms15354. Bibcode:2017NatCo...815354Y. doi:10.1038/ncomms15354. PMC 5454374. PMID 28516906.

Further reading[edit]