Jump to content

Totally real number field

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Lenthe (talk | contribs) at 14:44, 13 June 2005. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In number theory, a number field K is called totally real if for each embedding of K into the complex numbers the image lies inside the real numbers. Equivalent conditions on K, a finite extension of the rational number field Q, are that K is generated over Q by one root of an integer polynomial P, all of the roots of P being real; or that the tensor product algebra of K with the real field, over Q, is a product of copies of R.

For example, quadratic fields K of degree 2 over Q are either real (and then totally real), or complex, depending on whether the square root of a positive or negative number is adjoined to Q. In the case of cubic fields, a cubic integer polynomial P irreducible over Q will have at least one real root. If it has one real and two complex roots the corresponding cubic extension of Q defined by adjoining the real root will not be totally real, although it is a field of real numbers.

The totally real number fields play a significant special role in algebraic number theory. An abelian extension of Q is either totally real, or contains a totally real subfield over which it has degree two.