Treacher Collins syndrome

From Wikipedia, the free encyclopedia
  (Redirected from Treacher Collins Syndrome)
Jump to: navigation, search
Treacher Collins syndrome
Synonyms Treacher Collins–Franceschetti syndrome,[1] mandibulofacial dysostosis,[2] Franceschetti-Zwalen-Klein syndrome
TeacherCollinsFront.jpg
Child with Treacher Collins syndrome[3]
Classification and external resources
Specialty Medical genetics
ICD-10 Q75.4
ICD-9-CM 756.0
OMIM 154500
DiseasesDB 13267
MedlinePlus 001659
eMedicine plastic/183
MeSH D008342

Treacher Collins syndrome (TCS) is an autosomal dominant congenital disorder characterized by craniofacial deformities, typically involving the ears, eyes, cheekbones, and jawbone. Those affected have normal intelligence.[4]:577 The typical physical features include downward-slanting eyes, micrognathia (a small lower jaw), conductive hearing loss, underdeveloped zygomatic bones, drooping part of the lateral lower eyelids, and malformed or absent ears, but they can vary dramatically between affected people. These physical features can cause problems breathing, hearing, and seeing.[citation needed]

TCS is most commonly caused by a mutation in the TCOF1 gene, but can also be caused by mutations in POLR1C or POLR1D, all of which are genes involved in the development of the pharyngeal arches and assembly of ribosomes, making Treacher Collins a ribosomopathy. It is diagnosed with a physical examination, although imaging can be used to investigate specific symptoms. Treacher Collins syndrome is not curable, but its symptoms can be managed with reconstructive surgery, hearing aids, and other assistive devices and practices.[citation needed]

TCS occurs in about one in 50,000 births in Europe.[5] The syndrome is named after Edward Treacher Collins (1862–1932), an English surgeon and ophthalmologist, who described its essential traits in 1900.[6][7]

Signs and symptoms[edit]

The same child with Treacher Collins syndrome seen from the side, with small ears and a chin that is far back.[3]

Symptoms in people with Treacher Collins syndrome vary. Some individuals are so mildly affected that they remain undiagnosed, while others have severe facial involvement and life-threatening airway compromise.[8] Most of the features of TCS are symmetrical and are already recognisable at birth.[citation needed]

The most common symptom of Treacher Collins syndrome is underdevelopment of the lower jaw and underdevelopment of the zygomatic bone. This can be accompanied by the tongue being retracted. The small mandible can result in a poor occlusion of the teeth or in more severe cases, trouble breathing or swallowing. Underdevelopment of the zygomatic bone gives the cheeks a sunken appearance.[9][10]

The external ear is sometimes small, rotated, malformed, or absent entirely in people with TCS. Symmetric, bilateral narrowing or absence of the external ear canals is also described.[10][11] In most cases, the bones of the middle ear and the middle ear cavity are misshapen. Inner ear malformations are rarely described. As a result of these abnormalities, a majority of the individuals with TCS have conductive hearing loss.[10][12]

Most affected people also experience eye problems, including colobomata (notches) in the lower eyelids, partial or complete absence of eyelashes on the lower lid, downward angled eyelids, drooping of upper and lower eyelids, and narrowing of the tear ducts. Vision loss can occur and is associated with strabismus, refractive errors, and anisometropia. It can also be caused by severely dry eyes, a consequence of lower eyelid abnormalities and frequent eye infections.[10][11][13][14]

Although an abnormally shaped skull is not distinctive for Treacher Collins syndrome, brachycephaly with bitemporal narrowing is sometimes observed.[11] Cleft palate is also common.[10]

Dental anomalies are seen in 60% of affected people, including tooth agenesis (33%), discoloration (enamel opacities) (20%), malplacement of the maxillary first molars (13%), and wide spacing of the teeth. In some cases, dental anomalies in combination with mandible hypoplasia result in a malocclusion. This can lead to problems with food intake and the ability to close the mouth.[10]

Less common features of TCS may add to an affected person's breathing problems, including sleep apnea. Choanal atresia or stenosis is a narrowing or absence of the choanae, the internal opening of the nasal passages. Pharyngeal hypoplasia, underdevelopment of the pharynx, can also narrow the airway.[10]

Features related to TCS that are seen less frequently include nasal deformities, high-arched palate, macrostomia, preauricular hair displacement, cleft palate, hypertelorism, notched upper eyelid, and congenital heart defects.[9][10][14]

The general public may associate facial deformity with developmental delay and intellectual disability, but more than 95% of people affected with TCS have normal intelligence.[10] The psychological and social problems associated with facial deformity can affect quality of life in people with TCS.[citation needed]

Genetics[edit]

Treacher Collins syndrome is inherited in an autosomal-dominant pattern.

Mutations in TCOF1, POLR1C, or POLR1D genes can cause Treacher Collins syndrome.[15] TCOF1 gene mutations are the most common cause of the disorder, accounting for 81 to 93% of all cases. POLR1C and POLR1D gene mutations cause an additional 2% of cases. In individuals without an identified mutation in one of these genes, the genetic cause of the condition is unknown. The TCOF1, POLR1C, and POLR1D genes code for proteins which play important roles in the early development of bones and other tissues of the face. Mutations in these genes reduce the production of rRNA, which may trigger the self-destruction (apoptosis) of certain cells involved in the development of facial bones and tissues. It is unclear why the effects of a reduction in rRNA are limited to facial development. Mutations in TCOF1 and POLR1D cause the autosomal dominant form of Treacher Collins, and mutations in POLR1C cause the autosomal recessive form.[10]

TCOF1[edit]

TCOF1 is the only gene currently known to be associated with TCS, a mutation in this gene being found in 90-95% of the individuals with TCS.[9][16] However, in some individuals with typical symptoms of TCS, mutations in TCOF1 have not been found.[17] Investigation of the DNA has resulted in the identification of the kind of mutations found in TCOF1. The majority of mutations are small deletions or insertions, though splice site and missense mutations also have been identified.[9][18][19][20]

Mutation analysis has unveiled more than 100 disease-causing mutations in TCOF1, which are mostly family-specific mutations. The only recurrent mutation accounts for about 17% of the cases.[21]

TCOF1 is found on the 5th chromosome in the 5q32 region. It codes for a relatively simple nucleolar protein called treacle, that is thought to be involved in ribosome assembly.[16] Mutations in TCOF1 lead to haploinsufficiency of the treacle protein.[22] Haploinsufficiency occurs when a diploid organism has only one functional copy of a gene, because the other copy is inactivated by a mutation. The one normal copy of the gene does not produce enough protein, causing disease. Haploinsufficiency of the treacle protein leads to a depletion of the neural crest cell precursor, which leads to a reduced number of crest cells migrating to the first and second pharyngeal arches. These cells play an important role in the development of the craniofacial appearance, and loss of one copy of treacle affects the cells' ability to form the bones and tissues of the face.[10][18][23]

Other mutations[edit]

POLR1C and POLR1D mutations are responsible for a minority of cases of Treacher Collins. POLR1C is found on chromosome 6 at position 6q21.2 and codes for a protein subunit of RNA polymerase I. POLR1D is found on chromosome 13 at position 13q12.2 and codes for a protein subunit of RNA polymerase III. Both of these polymerases are important for ribosome biogenesis.[10]

Genetic counselling[edit]

TCS is inherited in an autosomal dominant manner and the penetrance of the affected gene is almost complete.[24] Some recent investigations, though, described some rare cases in which the penetrance in TCS was not complete. Causes may be a variable expressivity, an incomplete penetrance [25] or germline mosaicism.[26] Only 40% of the mutations are inherited. The remaining 60% are a result of a de novo mutation, where a child has a new mutation in the responsible gene and did not inherit it from either parent.[10][27] In the outcome of the disease, inter- and intrafamilial variability occurs. This suggests, when an affected child is born, it is important to investigate the parents to determine whether the affected gene is present, because the parent could have a mild form of the disease that has not been diagnosed. In this case, the risk of having another affected child is 50%. If the parents do not have the affected gene, the recurrence risk appears to be low.[24] In following generations, the severity of the clinical symptoms increases.[19]

Diagnosis[edit]

The diagnosis of Treacher Collins syndrome relies upon clinical and radiographic findings. Prenatal diagnosis cannot be guaranteed.[citation needed]

Prenatal diagnosis[edit]

Mutations in the main genes responsible for TCS can be detected with chorionic villus sampling or amniocentesis. Rare mutations may not be detected by these methods. Ultrasonography can be used to detect craniofacial abnormalities later in pregnancy, but may not detect milder cases.[10]

Clinical findings[edit]

TCS is often first suspected with characteristic symptoms observed during a physical exam. However, the clinical presentation of TCS can resemble other diseases, making diagnosis difficult.[28] The OMENS classification was developed as a comprehensive and stage-based approach to differentiate the diseases. This acronym describes five distinct dysmorphic manifestations, namely orbital asymmetry, mandibular hypoplasia, auricular deformity, nerve development, and soft-tissue disease.[29]

  • O0: normal orbital size, position
  • O1: abnormal orbital size
  • O2: abnormal orbital position
  • O3: abnormal orbital size and position

Mandible

  • M0: normal mandible
  • M1: small mandible and glenoid fossa with short ramus
  • M2: ramus short and abnormally shaped
  1. 2A: glenoid fossa in anatomical acceptable position
  2. 2B: Temperomandibular joint inferiorly (TMJ), medially, anteriorly displaced, with severely hypoplastic condyle
  • M3: Complete absence of ramus, glenoid fossa, and TMJ

Ear

  • E0: normal ear
  • E1: Minor hypoplasia and cupping with all structures present
  • E2: Absence of external auditory cannel with variable hypoplasia of the auricle
  • E3: Malposition of the lobule with absent auricle, lobular remnant usually inferior anteriorly displaced

Facial nerve

  • N0: No facial nerve involvement
  • N1: Upper facial nerve involvement (temporal or zygomatic branches)
  • N2: Lower facial nerve involvement (buccal, mandibular or cervical)
  • N3: All branches affected

Soft tissue

  • S0: No soft tissue or muscle deficiency
  • S1: Minimal tissue or muscle deficiency
  • S2: Moderate tissue or muscle deficiency
  • S3: Severe tissue or muscle deficiency

Radiological findings[edit]

Radiologic manifestations can be used to confirm the diagnosis. Imaging evaluation techniques used include X-rays (radiographs), CT scans, MRI, and ultrasound.[citation needed]

Radiographs[edit]

A few techniques are used to confirm the diagnosis in TCS.[28][30]

An orthopantomogram (OPG) is a panoramic dental X-ray of the upper and lower jaw. It shows a two-dimensional image from ear to ear. Particularly, OPG facilitates an accurate postoperative follow-up and monitoring of bone growth under a mono- or double-distractor treatment. Thereby, some TCS features could be seen on OPG, but better techniques are used to include the whole spectrum of TCS abnormalities instead of showing only the jaw abnormalities.[28]

Another method of radiographic evaluation is taking an X-ray image of the whole head. The lateral cephalometric radiograph in TCS shows hypoplasia of the facial bones, like the malar bone, mandible, and the mastoid.[28]

Finally, occipitomental radiographs are used to detect hypoplasia or discontinuity of the zygomatic arch.[30]

CT scan[edit]

A temporal-bone CT using thin slices makes it possible to diagnose the degree of stenosis and atresia of the external auditory channel, the status of the middle ear cavity, the absent or dysplastic and rudimentary ossicles, or the inner ear abnormalities such as a deficient cochlea. Two- and three-dimensional CT reconstructions with VRT and bone and skin-surfacing are helpful for more accurate staging and the three-dimensional planning of mandibular and external ear reconstructive surgery.[citation needed]

Differential diagnosis[edit]

Other diseases have similar characteristics to Treacher Collins syndrome. In the differential diagnosis, one should consider the acrofacial dysostoses. The facial appearance resembles that of Treacher Collins syndrome, but additional limb abnormalities occur in those persons. Examples of these diseases are Nager syndrome and Miller syndrome. The oculoauriculovertebral spectrum should also be considered in the differential diagnosis. An example is hemifacial microsomia, which primarily affects development of the ear, mouth, and mandible. This anomaly may occur bilaterally. Another disease which belongs to this spectrum is Goldenhar syndrome, which includes vertebral abnormalities, epibulbar dermoids and facial deformities.[31]

Treatment[edit]

The treatment of individuals with TCS may involve the intervention of professionals from multiple disciplines. The primary concerns are breathing and feeding, as a consequence of the hypoplasia of the mandibula and the obstruction of the hypopharynx by the tongue. Sometimes, they may require a tracheostomy to maintain an adequate airway,[32] and a gastrostomy to assure an adequate caloric intake while protecting the airway. Corrective surgery of the face is performed at defined ages, depending on the developmental state.[33]

An overview of the present guidelines:

  • If a cleft palate is present, the repair normally takes place at 9–12 months old. Before surgery, a polysomnography with a palatal plate in place is needed. This may predict the postoperative situation and gives insight on the chance of the presence of sleep apnea (OSAS) after the operation.[9][34][35]
  • Hearing loss is treated by bone conduction amplification, speech therapy, and educational intervention to avoid language/speech problems. The bone-anchored hearing aid is an alternative for individuals with ear anomalies[36]
  • Zygomatic and orbital reconstruction is performed when the cranio-orbitozygomatic bone is completely developed, usually at the age of 5–7 years. In children, an autologous bone graft is mostly used. In combination with this transplantation, lipofilling can be used in the periorbital area to get an optimal result of the reconstruction.[citation needed]; reconstruction of the lower eyelid coloboma includes the use of a myocutaneous flap, which is elevated and in this manner closes the eyelid defect.[37]
  • External ear reconstruction is usually done when the individual is at least eight years old. Sometimes, the external auditory canal or middle ear can also be treated.
  • The optimal age for the maxillomandibular reconstruction is controversial; as of 2004, this classification has been used:[9]
  1. Type I (mild) and Type IIa (moderate) 13–16 years
  2. Type IIb (moderate to severe malformation) at skeletal maturity
  3. Type III (severe) 6–10 years
  • When the teeth are cutting, the teeth should be under supervision of an orthodontist to make sure no abnormalities occur. If abnormalities like dislocation or an overgrowth of teeth are seen, appropriate action can be undertaken as soon as possible.[18]
  • Orthognatic treatments usually take place after the age of 16 years; at this point, all teeth are in place and the jaw and dentures are mature. Whenever OSAS is detected, the level of obstruction is determined through endoscopy of the upper airways. Mandibular advancement can be an effective way to improve both breathing and æsthetics, while a chinplasty only restores the profile.[9]
  • If a nose reconstruction is necessary, it is usually performed after the orthognatic surgery and after the age of 18 years.[9]
  • The contour of the facial soft tissues generally requires correction at a later age, because of the facial skeletal maturity. The use of microsurgical methods, like the free flap transfer, has improved the correction of facial soft tissue contours.[38] Another technique to improve the facial soft tissue contours is lipofilling. For instance, lipofilling is used to reconstruct the eyelids.[37]

Hearing loss[edit]

Hearing loss in Treacher Collins syndrome is caused by deformed structures in the outer and middle ear. The hearing loss is generally bilateral with a conductive loss of about 50-70 dB. Even in cases with normal auricles and open external auditory canals, the ossicular chain is often malformed.[39]

Attempts to surgically reconstruct the external auditory canal and improve hearing in children with TCS have not yielded positive results.[40]

Auditory rehabilitation with bone-anchored hearing aids (BAHAs) or a conventional bone conduction aid has proven preferable to surgical reconstruction.[36]

Epidemiology[edit]

TCS occurs in about one in 50,000 births in Europe.[5] Worldwide, it is estimated to occur in one in 10,000 to one in 50,000 births.[10]

History[edit]

The syndrome is named after Edward Treacher Collins (1862–1932), the English surgeon and ophthalmologist who described its essential traits in 1900.[6][7][41] In 1949, Adolphe Franceschetti and David Klein described the same condition on their own observations as mandibulofacial dysostosis. The term mandibulofacial dysostosis is used to describe the clinical features.[42]

Media portrayals[edit]

A July 1977 New York Times article[43] that was reprinted in numerous newspapers nationwide over the ensuing weeks brought this malady to many people's attention for the first time.

The disorder was featured on the show Nip/Tuck, in the episode "Blu Mondae".[44]

TLC's Born Without a Face[45] features Juliana Wetmore, who was born with the most severe case in medical history of this syndrome and is missing 30%–40% of the bones in her face.[45]

In 2010, BBC Three documentary Love Me, Love My Face[46] covered the case of a man, Jono Lancaster, with the condition. In 2011, BBC Three returned to Jono to cover his and his partner Laura's quest to start a family,[2] in So What If My Baby Is Born Like Me?,[47] which first aired as part of a BBC Three season of programmes on parenting.[48] The first film was replayed on BBC One shortly ahead of the second film's initial BBC Three broadcast. Lancaster's third BBC Three film, Finding My Family on Facebook, which looked at adoption, aired in 2011.[49]

In Wonder, the children's novel, the main character is a child who has Treacher Collins syndrome.[50]

See also[edit]

References[edit]

  1. ^ Rapini, Ronald P.; Bolognia, Jean L.; Jorizzo, Joseph L. (2007). Dermatology: 2-Volume Set. St. Louis: Mosby. pp. 894, 1686. ISBN 1-4160-2999-0. 
  2. ^ a b "'I hated seeing my face in the mirror'". BBC Online. 18 November 2010. Retrieved 2010-11-18. 
  3. ^ a b Goel, L; Bennur, SK; Jambhale, S (August 2009). "Treacher-collins syndrome-a challenge for anaesthesiologists.". Indian journal of anaesthesia. 53 (4): 496–500. PMID 20640217. 
  4. ^ James, William; Berger, Timothy; Elston, Dirk (2005). Andrews' Diseases of the Skin: Clinical Dermatology. (10th ed.). Saunders. ISBN 0-7216-2921-0.
  5. ^ a b Conte, Chiara; Maria Rosaria D'Apice; Fabrizio Rinaldi; Stefano Gambardella; Federica Sanguiuolo; Giuseppe Novelli (27 September 2011). "Novel mutations of TCOF1 gene in European patients with treacher Collins syndrome". Medical Genetics. 12. 
  6. ^ a b R, Pramod John; John, Pramod (2014). Textbook of Oral Medicine. JP Medical Ltd. p. 76. ISBN 9789350908501. 
  7. ^ a b Beighton, Greta (2012). The Man Behind the Syndrome. Springer Science & Business Media. p. 173. ISBN 9781447114154. 
  8. ^ Edwards, S J; Fowlie, A; Cust, M P; Liu, D T; Young, I D; Dixon, M J (1 July 1996). "Prenatal diagnosis in Treacher Collins syndrome using combined linkage analysis and ultrasound imaging.". Journal of Medical Genetics. 33 (7): 603–606. PMC 1050672Freely accessible. PMID 8818950. doi:10.1136/jmg.33.7.603. 
  9. ^ a b c d e f g h Katsanis SH, et al., Treacher Collins syndrome, 2004, GeneReviews
  10. ^ a b c d e f g h i j k l m n o "The Physician's Guide to Treacher Collins Syndrome" (PDF). National Organization for Rare Disorders (NORD). 2012. 
  11. ^ a b c Posnick, Jeffrey C (1 October 1997). "Treacher Collins syndrome: Perspectives in evaluation and treatment". Journal of Oral and Maxillofacial Surgery. 55 (10): 1120–1133. doi:10.1016/S0278-2391(97)90294-9. 
  12. ^ Trainor, Paul A; Dixon, Jill; Dixon, Michael J (24 December 2008). "Treacher Collins syndrome: etiology, pathogenesis and prevention". European Journal of Human Genetics. 17 (3): 275–283. PMC 2986179Freely accessible. PMID 19107148. doi:10.1038/ejhg.2008.221. 
  13. ^ Hertle, R W; Ziylan, S; Katowitz, J A (1 October 1993). "Ophthalmic features and visual prognosis in the Treacher-Collins syndrome.". British Journal of Ophthalmology. 77 (10): 642–645. doi:10.1136/bjo.77.10.642. 
  14. ^ a b Marszałek, B; Wójcicki, P; Kobus, K; Trzeciak, WH (2002). "Clinical features, treatment and genetic background of Treacher Collins syndrome.". Journal of applied genetics. 43 (2): 223–33. PMID 12080178. 
  15. ^ "Treacher Collins Syndrome". NORD (National Organization for Rare Disorders). Retrieved 2016-02-29. 
  16. ^ a b Dixon, Jill; Edwards, Sara J.; Gladwin, Amanda J.; Dixon, Michael J.; Loftus, Stacie K.; Bonner, Cynthia A.; Koprivnikar, Kathryn; Wasmuth, John J. (31 January 1996). "Positional cloning of a gene involved in the pathogenesis of Treacher Collins syndrome". Nature Genetics. 12 (2): 130–136. PMID 8563749. doi:10.1038/ng0296-130. 
  17. ^ Teber OA, Gillessen-Kaesbach G, Fischer S, Böhringer S, Albrecht B, Albert A, Arslan-Kirchner M, Haan E, Hagedorn-Greiwe M, Hammans C, Henn W, Hinkel GK, König R, Kunstmann E, Kunze J, Neumann LM, Prott EC, Rauch A, Rott HD, Seidel H, Spranger S, Sprengel M, Zoll B, Lohmann DR, Wieczorek D (2004). "Genotyping in 46 patients with tentative diagnosis of Treacher Collins syndrome revealed unexpected phenotypic variation". Eur. J. Hum. Genet. 12 (11): 879–90. PMID 15340364. doi:10.1038/sj.ejhg.5201260. 
  18. ^ a b c Dixon, J; Trainor, P; Dixon, MJ (1 May 2007). "Treacher Collins syndrome". Orthodontics & Craniofacial Research. 10 (2): 88–95. PMID 17552945. doi:10.1111/j.1601-6343.2007.00388.x. 
  19. ^ a b Masotti, Cibele; Ornelas, Camila C; Splendore-Gordonos, Alessandra; Moura, Ricardo; Félix, Têmis M; Alonso, Nivaldo; Camargo, Anamaria A; Passos-Bueno, Maria (1 January 2009). "Reduced transcription of TCOF1 in adult cells of Treacher Collins syndrome patients". BMC Medical Genetics. 10 (1): 136. PMC 2801500Freely accessible. PMID 20003452. doi:10.1186/1471-2350-10-136. 
  20. ^ Sakai, Daisuke; Trainor, Paul A. (31 May 2009). "Treacher Collins syndrome: Unmasking the role of Tcof1/treacle". The International Journal of Biochemistry & Cell Biology. 41 (6): 1229–1232. PMC 3093759Freely accessible. PMID 19027870. doi:10.1016/j.biocel.2008.10.026. 
  21. ^ Splendore, Alessandra; Fanganiello, Roberto D.; Masotti, Cibele; Morganti, Lucas S.C.; Rita Passos-Bueno, M. (1 May 2005). "TCOF1 mutation database: Novel mutation in the alternatively spliced exon 6A and update in mutation nomenclature". Human Mutation. 25 (5): 429–434. PMID 15832313. doi:10.1002/humu.20159. 
  22. ^ Isaac, C; Marsh, KL; Paznekas, WA; Dixon, J; Dixon, MJ; Jabs, EW; Meier, UT (September 2000). "Characterization of the nucleolar gene product, treacle, in Treacher Collins syndrome.". Molecular Biology of the Cell. 11 (9): 3061–71. PMC 14975Freely accessible. PMID 10982400. doi:10.1091/mbc.11.9.3061. 
  23. ^ Gorlin RJ, Syndromes of the Head and Neck, 2001, Oxford University Press, 4th edition
  24. ^ a b Dixon, MJ; Marres, HA; Edwards, SJ; Dixon, J; Cremers, CW (April 1994). "Treacher Collins syndrome: correlation between clinical and genetic linkage studies.". Clinical dysmorphology. 3 (2): 96–103. PMID 8055143. doi:10.1097/00019605-199404000-00002. 
  25. ^ Dixon, Jill; Ellis, Ian; Bottani, Armand; Temple, Karen; Dixon, Michael James (15 June 2004). "Identification of mutations in TCOF1: Use of molecular analysis in the pre- and postnatal diagnosis of Treacher Collins syndrome". American Journal of Medical Genetics. 127A (3): 244–248. PMID 15150774. doi:10.1002/ajmg.a.30010. 
  26. ^ Shoo, Brenda A.; McPherson, Elizabeth; Jabs, Ethylin Wang (1 April 2004). "Mosaicism of aTCOF1 mutation in an individual clinically unaffected with treacher collins syndrome". American Journal of Medical Genetics. 126A (1): 84–88. PMID 15039977. doi:10.1002/ajmg.a.20488. 
  27. ^ Splendore, Alessandra; Jabs, Ethylin Wang; Félix, Têmis Maria; Passos-Bueno, Maria Rita (31 August 2003). "Parental origin of mutations in sporadic cases of Treacher Collins syndrome". European Journal of Human Genetics. 11 (9): 718–722. PMID 12939661. doi:10.1038/sj.ejhg.5201029. 
  28. ^ a b c d Senggen, E; Laswed, T; Meuwly, JY; Maestre, LA; Jaques, B; Meuli, R; Gudinchet, F (May 2011). "First and second branchial arch syndromes: multimodality approach.". Pediatric radiology. 41 (5): 549–61. PMID 20924574. doi:10.1007/s00247-010-1831-3. 
  29. ^ Vento AR, et al., The O.M.E.N.S classification of hemifacial microsomia, 1991, Cleft Palate Craniofac, J 28,p. 68-76
  30. ^ a b Posnick JC, et al., Treacher Collins syndrome: current evaluation, treatment, and future directions, 2000, Cleft Palate Craniofac J., 55, p. 1120-1133
  31. ^ Dixon, MJ (1995). "Treacher Collins syndrome". Journal of Medical Genetics. 32 (10): 806–8. PMC 1051706Freely accessible. PMID 8558560. doi:10.1136/jmg.32.10.806. 
  32. ^ Goel L, et al., Treacher Collins syndrome-a challenge for anaesthesiologists, 2009, Indian J Anaesth, 53, p. 642-645
  33. ^ Evans, Adele Karen; Rahbar, Reza; Rogers, Gary F.; Mulliken, John B.; Volk, Mark S. (31 May 2006). "Robin sequence: A retrospective review of 115 patients". International Journal of Pediatric Otorhinolaryngology. 70 (6): 973–980. PMID 16443284. doi:10.1016/j.ijporl.2005.10.016. 
  34. ^ Rose, Edmund; Staats, Richard; Thissen, Ulrike; Otten, Jörg-Eland; Schmelzeisen, Rainer; Jonas, Irmtrud (1 August 2002). "Sleep-Related Obstructive Disordered Breathing in Cleft Palate Patients after Palatoplasty". Plastic and Reconstructive Surgery. 110 (2): 392–396. doi:10.1097/00006534-200208000-00002. 
  35. ^ Bannink, Natalja; Mathijssen, Irene M.J.; Joosten, Koen F.M. (1 September 2010). "Use of Ambulatory Polysomnography in Children With Syndromic Craniosynostosis". Journal of Craniofacial Surgery. 21 (5): 1365–1368. PMID 20856022. doi:10.1097/SCS.0b013e3181ec69a5. 
  36. ^ a b Marres, HA (2002). "Hearing loss in the Treacher-Collins syndrome.". Advances in oto-rhino-laryngology. 61: 209–15. PMID 12408086. doi:10.1159/000066811. 
  37. ^ a b Zhang, Zhiyong; Niu, Feng; Tang, Xiaojun; Yu, Bing; Liu, Jianfeng; Gui, Lai (1 September 2009). "Staged Reconstruction for Adult Complete Treacher Collins Syndrome". Journal of Craniofacial Surgery. 20 (5): 1433–1438. PMID 19816274. doi:10.1097/SCS.0b013e3181af21f9. 
  38. ^ Saadeh, Pierre B.; Chang, Christopher C.; Warren, Stephen M.; Reavey, Patrick; McCarthy, Joseph G.; Siebert, John W. (1 June 2008). "Microsurgical Correction of Facial Contour Deformities in Patients with Craniofacial Malformations: A 15-Year Experience". Plastic and Reconstructive Surgery. 121 (6): 368e–378e. PMID 18520863. doi:10.1097/PRS.0b013e3181707194. 
  39. ^ Argenta, Louis C.; Iacobucci, John J. (30 June 1989). "Treacher Collins Syndrome: Present concepts of the disorder and their surgical correction". World Journal of Surgery. 13 (4): 401–409. PMID 2773500. doi:10.1007/BF01660753. 
  40. ^ Marres, HA; Cremers, CW; Marres, EH (1995). "Treacher-Collins syndrome. Management of major and minor anomalies of the ear.". Revue de laryngologie - otologie - rhinologie. 116 (2): 105–8. PMID 7569369. 
  41. ^ Treacher Collin E, Cases with symmetrical congenital notches in the outer part of each lid and defective development of the malar bones, 1900, Trans Ophthalmol Soc UK, 20, p. 190-192
  42. ^ Franceschetti A, Klein D, Mandibulo-facial dysostosis: new hereditary syndrome, 1949, Acta Ophtalmol, 27, p. 143-224
  43. ^ "Surgical Teamwork Gives Disease Victims a New Life", Donald G. McNeil, Jr., July 26, 1977, page L31.
  44. ^ Nip/Tuck: Blu Mondae - TV.com
  45. ^ a b First Coast News: Local Family Has Daughter Born Without a Face
  46. ^ BBC programme page for Love Me, Love My Face
  47. ^ BBC programme page for So What If My Baby...
  48. ^ BBC Three Bringing Up Britain season
  49. ^ BBC Programmes (2011). 'Finding My Family on Facebook'. Retrieved from http://www.bbc.co.uk/programmes/b015d7y6.
  50. ^ Chilton, Martin (24 February 2012). "Wonder by R.J Palacio: review". The Telegraph. 

External links[edit]