Triapeirogonal tiling

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Triapeirogonal tiling
Triapeirogonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration (3.∞)2
Schläfli symbol r{∞,3}
Wythoff symbol 2 | ∞ 3
Coxeter diagram CDel node.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node.png
Symmetry group [∞,3], (*∞32)
Dual Order-3-infinite rhombille tiling
Properties Vertex-transitive edge-transitive

In geometry, the triapeirogonal tiling (or trigonal-horocyclic tiling) is a uniform tiling of the hyperbolic plane with a Schläfli symbol of r{∞,3}.

Related polyhedra and tiling[edit]

This hyperbolic tiling is topologically related as a part of sequence of uniform quasiregular polyhedra with vertex configurations (3.n.3.n), and [n,3] Coxeter group symmetry.

*n32 orbifold symmetries of quasiregular tilings: (3.n)2
Sym.
*n32
[n,3]
Spherical Euclid. Compact hyperb. Paraco. Noncompact hyperbolic
*332
[3,3]
Td
*432
[4,3]
Oh
*532
[5,3]
Ih
*632
[6,3]
p6m
*732
[7,3]
 
*832
[8,3]...
 
*∞32
[∞,3]
 
[12i,3] [9i,3] [6i,3]
Figure
Quasiregular fundamental domain.png
Uniform tiling 332-t1-1-.png Uniform tiling 432-t1.png Uniform tiling 532-t1.png Uniform tiling 63-t1.png H2 tiling 237-2.png H2 tiling 238-2.png H2 tiling 23i-2.png H2 tiling 23j12-2.png H2 tiling 23j9-2.png H2 tiling 23j6-2.png
Vertex (3.3)2 (3.4)2 (3.6)2 (3.6)2 (3.7)2 (3.8)2 (3.∞)2 (3.12i)2 (3.9i)2 (3.6i)2
Schläfli r{3,3} r{4,3} r{5,3} r{6,3} r{7,3} r{8,3} r{∞,3} r{12i,3} r{9i,3} r{6i,3}
Coxeter CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 7.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 8.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel ultra.pngCDel node 1.pngCDel 3.pngCDel node.png
Dual uniform figures
Dual
conf.
Uniform tiling 432-t0.png
V(3.3)2
Spherical rhombic dodecahedron.png
V(3.4)2
Spherical rhombic triacontahedron.png
V(3.5)2
Rhombic star tiling.png
V(3.6)2
Order73 qreg rhombic til.png
V(3.7)2
Uniform dual tiling 433-t01-yellow.png
V(3.8)2
Ord3infin qreg rhombic til.png
V(3.∞)2
Paracompact hyperbolic uniform tilings in [∞,3] family
Symmetry: [∞,3], (*∞32) [∞,3]+
(∞32)
[1+,∞,3]
(*∞33)
[∞,3+]
(3*∞)
CDel node 1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node h.pngCDel infin.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node h1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.png CDel node h1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node.pngCDel infin.pngCDel node h.pngCDel 3.pngCDel node h.png
CDel node h0.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node.png
= CDel labelinfin.pngCDel branch 11.pngCDel split2.pngCDel node.png
CDel node h0.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node 1.png
= CDel labelinfin.pngCDel branch 11.pngCDel split2.pngCDel node 1.png
CDel node h0.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node 1.png
= CDel labelinfin.pngCDel branch.pngCDel split2.pngCDel node 1.png
CDel node 1.pngCDel infin.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node h1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.png =
CDel labelinfin.pngCDel branch 10ru.pngCDel split2.pngCDel node.png or CDel labelinfin.pngCDel branch 01rd.pngCDel split2.pngCDel node.png
CDel node h1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node 1.png =
CDel labelinfin.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.png or CDel labelinfin.pngCDel branch 01rd.pngCDel split2.pngCDel node 1.png
CDel node h0.pngCDel infin.pngCDel node h.pngCDel 3.pngCDel node h.png
= CDel labelinfin.pngCDel branch hh.pngCDel split2.pngCDel node h.png
H2 tiling 23i-1.png H2 tiling 23i-3.png H2 tiling 23i-2.png H2 tiling 23i-6.png H2 tiling 23i-4.png H2 tiling 23i-5.png H2 tiling 23i-7.png Uniform tiling i32-snub.png H2 tiling 33i-1.png
{∞,3} t{∞,3} r{∞,3} t{3,∞} {3,∞} rr{∞,3} tr{∞,3} sr{∞,3} h{∞,3} h2{∞,3} s{3,∞}
Uniform duals
CDel node f1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.png CDel node f1.pngCDel infin.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel infin.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel infin.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel infin.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node fh.pngCDel infin.pngCDel node fh.pngCDel 3.pngCDel node fh.png CDel node fh.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.png CDel node.pngCDel infin.pngCDel node fh.pngCDel 3.pngCDel node fh.png
H2 tiling 23i-4.png Ord-infin triakis triang til.png Ord3infin qreg rhombic til.png H2checkers 33i.png H2 tiling 23i-1.png Deltoidal triapeirogonal til.png H2checkers 23i.png Order-3-infinite floret pentagonal tiling.png Alternate order-3 apeirogonal tiling.png
V∞3 V3.∞.∞ V(3.∞)2 V6.6.∞ V3 V4.3.4.∞ V4.6.∞ V3.3.3.3.∞ V(3.∞)3 V3.3.3.3.3.∞
Paracompact hyperbolic uniform tilings in [(∞,3,3)] family
Symmetry: [(∞,3,3)], (*∞33) [(∞,3,3)]+, (∞33)
CDel labelinfin.pngCDel branch 01rd.pngCDel split2.pngCDel node.png CDel labelinfin.pngCDel branch 11.pngCDel split2.pngCDel node.png CDel labelinfin.pngCDel branch 10ru.pngCDel split2.pngCDel node.png CDel labelinfin.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.png CDel labelinfin.pngCDel branch.pngCDel split2.pngCDel node 1.png CDel labelinfin.pngCDel branch 01rd.pngCDel split2.pngCDel node 1.png CDel labelinfin.pngCDel branch 11.pngCDel split2.pngCDel node 1.png CDel labelinfin.pngCDel branch hh.pngCDel split2.pngCDel node h.png
CDel node h1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.png CDel node h0.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node h1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.png CDel node h1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node h0.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node h1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node h0.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node h0.pngCDel infin.pngCDel node h.pngCDel 3.pngCDel node h.png
H2 tiling 33i-1.png H2 tiling 33i-3.png H2 tiling 33i-2.png H2 tiling 33i-6.png H2 tiling 33i-4.png H2 tiling 33i-5.png H2 tiling 33i-7.png
{(∞,∞,3)} t0,1{(∞,3,3)} t1(∞,3,3) t1,2(∞,3,3) t2{(∞,3,3)} t0,2(∞,3,3) t0,1,2{(∞,3,3)} s(∞,3,3)
Dual tilings
CDel 3.pngCDel node f1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.png CDel 3.pngCDel node f1.pngCDel infin.pngCDel node f1.pngCDel 3.pngCDel node.pngCDel 3.png CDel 3.pngCDel node.pngCDel infin.pngCDel node f1.pngCDel 3.pngCDel node.pngCDel 3.png CDel 3.pngCDel node.pngCDel infin.pngCDel node f1.pngCDel 3.pngCDel node f1.pngCDel 3.png CDel 3.pngCDel node.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node f1.pngCDel 3.png CDel 3.pngCDel node f1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node f1.pngCDel 3.png CDel 3.pngCDel node f1.pngCDel infin.pngCDel node f1.pngCDel 3.pngCDel node f1.pngCDel 3.png CDel 3.pngCDel node fh.pngCDel infin.pngCDel node fh.pngCDel 3.pngCDel node fh.pngCDel 3.png
Ord3infin qreg rhombic til.png H2 tiling 23i-1.png H2checkers 33i.png
V(3.∞)3 V3.∞.3.∞ V(3.∞)3 V3.6.∞.6 V(3.3) V3.6.∞.6 V6.6.∞ V3.3.3.3.3.∞

See also[edit]

References[edit]

External links[edit]