From Wikipedia, the free encyclopedia
Trifluralin structure.png
Preferred IUPAC name
Other names
3D model (JSmol)
ECHA InfoCard 100.014.936 Edit this at Wikidata
  • InChI=1S/C13H16F3N3O4/c1-3-5-17(6-4-2)12-10(18(20)21)7-9(13(14,15)16)8-11(12)19(22)23/h7-8H,3-6H2,1-2H3 checkY
  • InChI=1/C13H16F3N3O4/c1-3-5-17(6-4-2)12-10(18(20)21)7-9(13(14,15)16)8-11(12)19(22)23/h7-8H,3-6H2,1-2H3
  • [O-][N+](=O)c1cc(cc([N+]([O-])=O)c1N(CCC)CCC)C(F)(F)F
Molar mass 335.28 g/mol
Appearance Yellow crystals
Melting point 46 to 47 °C (115 to 117 °F; 319 to 320 K)
Boiling point 139 to 140 °C (282 to 284 °F; 412 to 413 K) (at 4.2 mmHg)
0.0024 g/100 mL
Lethal dose or concentration (LD, LC):
>5000 mg/kg (rat, oral)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Trifluralin is a commonly used pre-emergence herbicide. With about 14 million pounds (6,400 t) used in the United States in 2001, it is one of the most widely used herbicides.[2] Trifluralin is generally applied to the soil to provide control of a variety of annual grass and broadleaf weed species. It inhibits root development by interrupting mitosis, and thus can control weeds as they germinate.[3]

Environmental Regulation[edit]

Trifluralin has been banned in the European Union since 20 March 2008, primarily due to high toxicity to aquatic life.[4]

Trifluralin is on the United States Environmental Protection Agency list of Hazardous Air Pollutants as a regulated substance under the Clean Air Act.[5]

Environmental behavior[edit]

Trifluralin undergoes an extremely complex fate in the environment and is transiently transformed into many different products as it degrades, ultimately being incorporated into soil-bound residues or converted to carbon dioxide (mineralized). Among the more unusual behaviors of trifluralin is inactivation in wet soils. This has been linked to transformation of the herbicide by reduced soil minerals, which in turn had been previously reduced by soil microorganisms using them as electron acceptors in the absence of oxygen. This environmental degradation process has been reported for many structurally related herbicides (dinitroanilines) as well as a variety of explosives like TNT and picric acid.[6]


  1. ^ Merck Index, 11th Edition, 9598.
  2. ^ 2000-2001 Pesticide Market Estimates, United States Environmental Protection Agency
  3. ^ Grover, R., J.D. Wolt, A.J. Cessna, and H.B. Schiefer. 1997. Environmental fate of trifluralin. Reviews of Environmental Contamination and Toxicology 153: 65-90.
  4. ^ European Union - Final Regulatory Action
  5. ^ "Initial List of Hazardous Air Pollutants with Modifications". United States Environmental Protection Agency. Retrieved 16 December 2021.
  6. ^ Tor, J., C. Xu, J. M. Stucki, M. Wander, G. K. Sims. 2000. Trifluralin degradation under micro-biologically induced nitrate and Fe(III) reducing conditions. Env. Sci. Tech. 34:3148-3152.

External links[edit]

  • Trifluralin in the Pesticide Properties DataBase (PPDB)