Truncated cube

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Truncated cube
Truncatedhexahedron.jpg
(Click here for rotating model)
Type Archimedean solid
Uniform polyhedron
Elements F = 14, E = 36, V = 24 (χ = 2)
Faces by sides 8{3}+6{8}
Conway notation tC
Schläfli symbols t{4,3}
t0,1{4,3}
Wythoff symbol 2 3 | 4
Coxeter diagram CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Symmetry group Oh, BC3, [4,3], (*432), order 48
Rotation group O, [4,3]+, (432), order 24
Dihedral Angle 3-8:125°15'51"
8-8:90°
References U09, C21, W8
Properties Semiregular convex
Truncated hexahedron.png
Colored faces
Truncated cube vertfig.png
3.8.8
(Vertex figure)
Triakisoctahedron.jpg
Triakis octahedron
(dual polyhedron)
Truncated hexahedron flat.svg
Net

In geometry, the truncated cube, or truncated hexahedron, is an Archimedean solid. It has 14 regular faces (6 octagonal and 8 triangular), 36 edges, and 24 vertices.

If the truncated cube has unit edge length, its dual triakis octahedron has edges of lengths 2 and \scriptstyle {2+\sqrt{2}}.

Area and volume[edit]

The area A and the volume V of a truncated cube of edge length a are:

A = 2\left(6+6\sqrt{2}+\sqrt{3}\right)a^2 \approx 32.4346644a^2
V = \frac{1}{3}\left(21+14\sqrt{2}\right)a^3 \approx 13.5996633a^3.

Orthogonal projections[edit]

The truncated cube has five special orthogonal projections, centered, on a vertex, on two types of edges, and two types of faces: triangles, and octagons. The last two correspond to the B2 and A2 Coxeter planes.

Orthogonal projections
Centered by Vertex Edge
3-8
Edge
8-8
Face
Octagon
Face
Triangle
Truncated
cube
Cube t01 v.png Cube t01 e38.png Cube t01 e88.png 3-cube t01 B2.svg 3-cube t01.svg
Triakis
octahedron
Dual truncated cube t01 v.png Dual truncated cube t01 e8.png Dual truncated cube t01 e88.png Dual truncated cube t01 B2.png Dual truncated cube t01.png
Projective
symmetry
[2] [2] [2] [4] [6]

Spherical tiling[edit]

The truncated cube can also be represented as a spherical tiling, and projected onto the plane via a stereographic projection. This projection is conformal, preserving angles but not areas or lengths. Straight lines on the sphere are projected as circular arcs on the plane.

Uniform tiling 432-t01.png Truncated cube stereographic projection octagon.png
octagon-centered
Truncated cube stereographic projection triangle.png
triangle-centered
Orthographic projection Stereographic projections

Cartesian coordinates[edit]

The following Cartesian coordinates define the vertices of a truncated hexahedron centered at the origin with edge length 2ξ:

(±ξ, ±1, ±1),
(±1, ±ξ, ±1),
(±1, ±1, ±ξ)

where ξ = \scriptstyle {\sqrt2 - 1}

The parameter ξ can be varied between ±1. A value of 1 produces a cube, 0 produces a cuboctahedron, and negative values produces self-intersecting octagrammic faces.

Truncated cube sequence.png

If the self-intersected portions of the octagrams are removed, leaving squares, and truncating the triangles into hexagons, truncated octahedrons are produced, and the sequence ends with the central squares being reduced to a point, and creating an octahedron.

Dissection[edit]

Dissected truncated cube, with elements expanded apart

The truncated cube can be dissected into a central cube, with six square cupola around each of the cube's faces, and 8 regular tetrahedral in the corners. This dissection can also be seen within the runcic cubic honeycomb, with cube, tetrahedron, and rhombicuboctahedron cells.

This dissection can be used to create a Stewart toroid with all regular faces by removing two square cupola and the central cube. This excavated cube has 16 triangles, 12 squares, and 4 octagons.[1][2]

Excavated truncated cube.png

Vertex arrangement[edit]

It shares the vertex arrangement with three nonconvex uniform polyhedra:

Truncated hexahedron.png
Truncated cube
Uniform great rhombicuboctahedron.png
Nonconvex great rhombicuboctahedron
Great cubicuboctahedron.png
Great cubicuboctahedron
Great rhombihexahedron.png
Great rhombihexahedron

Related polyhedra[edit]

The truncated cube is one of a family of uniform polyhedra related to the cube and regular octahedron.

Uniform octahedral polyhedra
Symmetry: [4,3], (*432) [4,3]+, (432) [3+,4], (3*2)
Uniform polyhedron-43-t0.svg Uniform polyhedron-43-t01.svg Uniform polyhedron-43-t1.svg Uniform polyhedron-43-t12.svg Uniform polyhedron-43-t2.svg Uniform polyhedron-43-t02.png Uniform polyhedron-43-t012.png Uniform polyhedron-43-s012.png Uniform polyhedron-43-h01.svg
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
{4,3} t{4,3} r{4,3} t{3,4} {3,4} rr{4,3} tr{4,3} sr{4,3} s{3,4}
Duals to uniform polyhedra
Octahedron.svg Triakisoctahedron.jpg Rhombicdodecahedron.jpg Tetrakishexahedron.jpg Hexahedron.svg Deltoidalicositetrahedron.jpg Disdyakisdodecahedron.jpg Pentagonalicositetrahedronccw.jpg Dodecahedron.svg
V43 V3.82 V(3.4)2 V4.62 V34 V3.43 V4.6.8 V34.4 V35

Symmetry mutations[edit]

This polyhedron is topologically related as a part of sequence of uniform truncated polyhedra with vertex configurations (3.2n.2n), and [n,3] Coxeter group symmetry.

*n32 symmetry mutation of truncated spherical tilings: 3.2n.2n
Symmetry
*n32
[n,3]
Spherical Euclid. Compact hyperb. Paraco.
*232
[2,3]
*332
[3,3]
*432
[4,3]
*532
[5,3]
*632
[6,3]
*732
[7,3]
*832
[8,3]...
*∞32
[∞,3]
Truncated
figures
Spherical triangular prism.png Uniform tiling 332-t01-1-.png Uniform tiling 432-t01.png Uniform tiling 532-t01.png Uniform tiling 63-t01.png H2 tiling 237-3.png H2 tiling 238-3.png H2 tiling 23i-3.png
Config. 3.4.4 3.6.6 3.8.8 3.10.10 3.12.12 3.14.14 3.16.16 3.∞.∞
Triakis
figures
Spherical trigonal bipyramid.png Spherical triakis tetrahedron.png Spherical triakis octahedron.png Spherical triakis icosahedron.png Tiling Dual Semiregular V3-12-12 Triakis Triangular.svg Ord7 triakis triang til.png Ord8 triakis triang til.png Ord-infin triakis triang til.png
Config. V3.4.4 V3.6.6 V3.8.8 V3.10.10 V3.12.12 V3.14.14 V3.16.16 V3.∞.∞

It is topologically related to a series of polyhedra and tilings with face configuration Vn.8.8.

*n42 symmetry mutation of truncated tilings: n.8.8
Symmetry
*n42
[n,4]
Spherical Euclidean Compact hyperbolic Paracompact
*242
[2,4]
*342
[3,4]
*442
[4,4]
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]...
*∞42
[∞,4]
Truncated
figures
Hexagonal dihedron.png Uniform tiling 432-t01.png Uniform tiling 44-t12.png H2 tiling 245-6.png H2 tiling 246-6.png H2 tiling 247-6.png H2 tiling 248-6.png H2 tiling 24i-6.png
Config. 2.8.8 3.8.8 4.8.8 5.8.8 6.8.8 7.8.8 8.8.8 ∞.8.8
n-kis
figures
Spherical octagonal hosohedron.png Spherical triakis octahedron.png 1-uniform 2 dual.svg Order-4 pentakis pentagonal tiling.png Order4 hexakis hexagonal til.png Order4 heptakis heptagonal til.png Uniform tiling 83-t2.png Ord4 apeirokis apeirogonal til.png
Config. V2.8.8 V3.8.8 V4.8.8 V5.8.8 V6.8.8 V7.8.8 V8.8.8 V∞.8.8

Alternated truncation[edit]

A cube can be alternately truncated producing tetrahedral symmetry, with six hexagonal faces, and four triangles at the truncated vertices. It is one of a sequence of alternate truncations of polyhedra and tiling.

Alternate truncated cube.png

Related polytopes[edit]

The truncated cube, is second in a sequence of truncated hypercubes:

Truncated hypercubes
Regular polygon 8 annotated.svg 3-cube t01.svgTruncated hexahedron.png 4-cube t01.svgSchlegel half-solid truncated tesseract.png 5-cube t01.svg5-cube t01 A3.svg 6-cube t01.svg6-cube t01 A5.svg 7-cube t01.svg7-cube t01 A5.svg 8-cube t01.svg8-cube t01 A7.svg ...
Octagon Truncated cube Truncated tesseract Truncated 5-cube Truncated 6-cube Truncated 7-cube Truncated 8-cube
CDel node 1.pngCDel 4.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

Truncated cubical graph[edit]

Truncated cubical graph
Truncated cubic graph.png
4-fold symmetry schlegel diagram
Vertices 24
Edges 36
Automorphisms 48
Chromatic number 2
Properties Cubic, Hamiltonian, regular, zero-symmetric

In the mathematical field of graph theory, a truncated cubical graph is the graph of vertices and edges of the truncated cube, one of the Archimedean solids. It has 24 vertices and 36 edges, and is a cubic Archimedean graph.[3]

3-cube t01.svg
Orthographic

See also[edit]

References[edit]

  1. ^ B. M. Stewart, Adventures Among the Toroids (1970) ISBN 978-0-686-11936-4
  2. ^ http://www.doskey.com/polyhedra/Stewart05.html
  3. ^ Read, R. C.; Wilson, R. J. (1998), An Atlas of Graphs, Oxford University Press, p. 269 
  • Williams, Robert (1979). The Geometrical Foundation of Natural Structure: A Source Book of Design. Dover Publications, Inc. ISBN 0-486-23729-X.  (Section 3-9)
  • Cromwell, P. Polyhedra, CUP hbk (1997), pbk. (1999). Ch.2 p.79-86 Archimedean solids

External links[edit]