Truncated order-8 octagonal tiling

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Truncated order-8 octagonal tiling
Truncated order-8 octagonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration 8.16.16
Schläfli symbol t{8,8}
t(8,8,4)
Wythoff symbol 2 8 | 4
Coxeter diagram CDel node 1.pngCDel 8.pngCDel node 1.pngCDel 8.pngCDel node.png
CDel 3.pngCDel node 1.pngCDel 8.pngCDel node 1.pngCDel 8.pngCDel node 1.pngCDel 4.pngCDel 3.png
Symmetry group [8,8], (*882)
[(8,8,4)], (*884)
Dual Order-8 octakis octagonal tiling
Properties Vertex-transitive

In geometry, the truncated order-8 octagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t0,1{8,8}.

Uniform colorings[edit]

This tiling can also be constructed in *884 symmetry with 3 colors of faces:

H2 tiling 488-7.png

Related polyhedra and tiling[edit]

Symmetry[edit]

The dual of the tiling represents the fundamental domains of (*884) orbifold symmetry. From [(8,8,4)] (*884) symmetry, there are 15 small index subgroup (11 unique) by mirror removal and alternation operators. Mirrors can be removed if its branch orders are all even, and cuts neighboring branch orders in half. Removing two mirrors leaves a half-order gyration point where the removed mirrors met. In these images fundamental domains are alternately colored black and white, and mirrors exist on the boundaries between colors. The symmetry can be doubled to 882 symmetry by adding a bisecting mirror across the fundamental domains. The subgroup index-8 group, [(1+,8,1+,8,1+,4)] (442442) is the commutator subgroup of [(8,8,4)].

Small index subgroups of [(8,8,4)] (*884)
Fundamental
domains
H2checkers 488.png H2chess 488e.png
H2chess 488b.png
H2chess 488f.png
H2chess 488c.png
H2chess 488d.png
H2chess 488a.png
H2chess 488b.png
H2chess 488c.png
H2chess 488a.png
Subgroup index 1 2 4
Coxeter [(8,8,4)]
CDel node.pngCDel split1-88.pngCDel branch.pngCDel label4.png
[(1+,8,8,4)]
CDel node c1.pngCDel split1-88.pngCDel branch h0c2.pngCDel label4.png
[(8,8,1+,4)]
CDel node c1.pngCDel split1-88.pngCDel branch c3h0.pngCDel label4.png
[(8,1+,8,4)]
CDel labelh.pngCDel node.pngCDel split1-88.pngCDel branch c3-2.pngCDel label4.png
[(1+,8,8,1+,4)]
CDel labelh.pngCDel node.pngCDel split1-88.pngCDel branch c3h0.pngCDel label4.png
[(8+,8+,4)]
CDel node c1.pngCDel split1-88.pngCDel branch h0h0.pngCDel label4.png
orbifold *884 *8482 *4444 2*4444 442×
Coxeter [(8,8+,4)]
CDel node h2.pngCDel split1-88.pngCDel branch c3h2.pngCDel label4.png
[(8+,8,4)]
CDel node h2.pngCDel split1-88.pngCDel branch h2c2.pngCDel label4.png
[(8,8,4+)]
CDel node c1.pngCDel split1-88.pngCDel branch h2h2.pngCDel label4.png
[(8,1+,8,1+,4)]
CDel labelh.pngCDel node.pngCDel split1-88.pngCDel branch h0c2.pngCDel label4.png
[(1+,8,1+,8,4)]
CDel node h4.pngCDel split1-88.pngCDel branch h2h2.pngCDel label4.png
Orbifold 8*42 4*44 4*4242
Direct subgroups
Subgroup index 2 4 8
Coxeter [(8,8,4)]+
CDel node h2.pngCDel split1-88.pngCDel branch h2h2.pngCDel label4.png
[(1+,8,8+,4)]
CDel node h2.pngCDel split1-88.pngCDel branch h0h2.pngCDel label4.png
[(8+,8,1+,4)]
CDel node h2.pngCDel split1-88.pngCDel branch h2h0.pngCDel label4.png
[(8,1+,8,4+)]
CDel labelh.pngCDel node.pngCDel split1-88.pngCDel branch h2h2.pngCDel label4.png
[(1+,8,1+,8,1+,4)] = [(8+,8+,4+)]
CDel node h4.pngCDel split1-88.pngCDel branch h4h4.pngCDel label4.png
Orbifold 844 8482 4444 442442

References[edit]

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678. 

See also[edit]

External links[edit]